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Abstract
The development of models to predict important environmental properties is easily
recognised in the light of the great number of existing chemicals that still need to be
characterised. To meet the needs for testing new chemicals such models may also be
useful. Here new quantitative structure-activity relationship (QSAR) models are
presented to predict acute and subacute aquatic toxicity to a green alga
(Pseudokirschneriella subcapitata), a crustacea (Daphnia magna), two fish species
(Lepomis macrochirus, Leuciscus idus) and a bacterial bioluminescence inhibition test
(Microtox3). The toxicity is predicted from more than 1400 molecular descriptors using
the multivariate statistical method partial least squares (PLS) regression. The models are
based on descriptors calculated from the chemical structure only and can be applied to
substances that have not yet been isolated or synthesised.

QSAR models were obtained for which the standard prediction errors in logarithmic
units correspond to the following concentration factors:

• Microtox 15 min bioluminescence inhibition EC50 � a factor 3.4

• green alga 96 h growth rate inhibition EC50 � a factor 2.8

• Daphnia magna 48 h immobilisation EC50 � a factor 2.3

• Lepomis macrochirus 96 h toxicity LC50 � a factor 2.4

• Leuciscus idus 96 h toxicity LC50 � a factor 3.5

In addition to development of prognosis models, the aim of this project was to develop
methodology to obtain more reliable QSAR model predictions of toxicity. Two
methodologies that are very important in this respect are systematic selection of the
training set by statistical molecular design (SMD) and outlier detection. Partial least
squares (PLS) modelling provides unique diagnostic tools when the model is used to
predict the toxicity of new substances. Using these, it can be detected if the model does
not cover the substance that the model is applied to, i.e. if the substance is a model
outlier and the prediction is likely to be inaccurate. It is shown that reliable automatic
outlier detection with a high efficiency can be obtained. This is a huge advantage for
routine use of QSAR models and a leap forward towards reliable QSAR estimates of
substance properties without requiring expert knowledge by the user.
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1 Introduction
The work described in this report is related to methods for estimating environmentally
important properties, such as aquatic toxicity, from the structure of the chemical
substance. The use of quantitative structure activity relationships (QSAR) is becoming
established and accepted for estimating the ecotoxicity of many chemicals in the
absence of results from actual toxicity tests1. However, there are some limitations
associated with most QSAR models used today:

• Application relies on the availability of measured physicochemical parameters such
as octanol/water partition coefficient, density, refractive index, boiling- and melting
point, etc.

• A prediction from the model does not give any diagnostic information on whether or
not the model is valid for this compound and, thus, what the quality of the prediction
can be expected to be.

• The applicability of the models is in general limited to narrow classes of compounds

The aim of the research presented here is to investigate to what degree these limitations
can be relaxed and what modelling methods and molecular descriptor are best in this
respect.

The first limitation is serious, since it is often of great interest to assess the
environmental properties of a substance that has not been isolated in a laboratory.
Further, laboratory tests, even simple tests like solubility and partition coefficients are
time consuming and expensive even when the substance has been isolated. Thus, our
work has focused completely on models that are based on the structure of the substance
alone, i.e. without requiring access to the actual substance and any physicochemical
measurements.

The lack of prediction diagnostics that indicates what the quality of the prediction can
be expected can easily over-confidence in the value produced by the model. A value
without uncertainty measure is often perceived as exact, although the opposite is usually
more adequate. In our opinion, a value should be treated with scepticism in the absence
of an uncertainty estimate of some kind.

                                                
1 See e.g. the homepage of the ECOSAR software under the USEPA New chemicals program,
http://www.epa.gov/oppt/newchems/21ecosar.htm. Please note the discussion about these models in
chapter 6 of this report.
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Multivariate modelling methods based on latent variables, such as principal component
analysis (PCA) and partial least squares (PLS) can provide prediction diagnostics with
each prediction due to the fact that the covariance structure in the descriptor set is
modelled. Although PLS has been used in several QSAR studies [Giraud et al. 2000,
Shi et al. 2001, Tong et al. 1998, Eriksson et al. 2000], this important feature of the
algorithm is often neglected.

The third limitation listed above, that the models are valid only for a narrow class of
compounds, is probably the most difficult to solve. The reason for this is that different
groups of substances can act with different mechanisms, which may be difficult to
capture in a single model, especially for more specific and complex responses. The
research presented here deals primarily with more general responses like aquatic
toxicity. In order to reach the goal of general applicability, the work has been focused
on models covering a wide range of chemicals.

2 Toxicity
The toxicity is an important property used in risk assessment and classification of
substances. Acute toxicity, usually synonymous to lethality, is characterised by short-
term exposure in relation to the life cycle of the organism. Long-term exposure, usually
to lower doses may cause chronic effects. Effects on reproduction and exposure to more
than one life cycle represent such effects.

In this study the bioluminescence inhibition of a marine bacterium kept at non-
reproducing conditions (Microtox), the Daphnia magna 48 h immobilisation test and
the 96 h fish lethality tests all represent acute toxic effects. The alga growth rate
inhibition test, however, could be considered at least as a sub-acute or sub-chronic test
although the duration was only 96 h. Several life cycles pass within this time and effects
on the reproduction may be tested.

3 Theory

3.1 Molecular descriptors

In the scope of the investigation presented in this report, the purpose of molecular
descriptors is to be the basis of models describing some aspect or aspects of the
behaviour of chemical substances. Some general requirements that need to be fulfilled
in order to make this possible are:
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• The descriptors should contain relevant information for the purpose of the
modelling, i.e. the aspect of the behaviour modelled. This means that the descriptor
should allow for, and take into account, flexibility in the chemical structure if this is
necessary to capture the behaviour of the substance.

• Most modelling methods require that the size of the descriptor set is independent of
the size of the molecule.

Molecular descriptors can be classified by origin into measured and calculated
descriptors. The major difference from an application point-of-view is that the chemical
substance in question is required in order to obtain a measured descriptor while the
calculated descriptors can be obtained for substances that cannot be isolated or have not
yet been synthesised.

Andersson et al. [2000] have compared the information content in measured
physicochemical and some calculated descriptors. Their results show that the descriptor
sets contain similar information for the data sets investigated. The aim of the work
presented in this report is to forecast environmental properties of large sets of new
chemical substances. Measured properties are frequently not available for such sets and
the aim is often to prioritise the substances for tests. Thus, the work presented is focused
on the use of calculated descriptors and measured descriptors are discussed only very
briefly below.

The distinction between measured and calculated descriptors is only one of many
distinctions that can be made. Other possible classifications are global and local
(depending on if the descriptor describes a property of the whole or a part of the
molecule), static and dynamic (depending on whether dynamics of e.g. conformational
changes are considered) as well as relative and absolute [Wehrens et al. 1999].

3.1.1 Measured descriptors

Undoubtedly, the single most important descriptor used in QSAR is hydrophobicity,
which is usually measured as the logarithm of the octanol/water partition coefficient,
log KOW.

Other examples of useful measured descriptors include [Andersson et al. 2000,
Livingstone 2000]:

• solubilities in different solvents
• boiling, melting and flash points
• spectroscopic properties such as NMR shifts or IR/Raman stretching frequencies
• molecular volume and density
• specific refraction and molecular refractivity



Estimating environmentally important properties of chemicals IVL Rapport  B1517
from the chemical structure

7

It is not difficult to understand why properties like log KOW and solubility are important
since they reflect the way the substance is distributed within an organism, which is of
course important for its biological activity.

There are numerous methods for estimating log KOW from the chemical structure based
on different algorithms. Frequently such estimates are used as a descriptor for further
QSAR modelling if experimental log KOW values are not available. In such cases, the
descriptor is not measured but often it is still denoted measured since both measured
and calculated values of log KOW are used as basis for the same model and no
distinction is made between them.

3.1.2 Calculated descriptors

In order to relate chemical structure to biological activity or other molecular properties,
it is necessary to describe the chemical structure numerically in some manner. A
calculated molecular descriptor is a number extracted by a well-defined algorithm from
a structural representation of the molecule. The descriptors are defined by the algorithm
used for the calculation. Often, the chemical/physical interpretation of this number is
not straightforward. However, this does not mean that the descriptor does not contain
useful information about the properties of the molecule. We quote professor Roberto
Todeschini of the Chemometrics and QSAR research group, Dept. of Environmental
Sciences, University of Milano-Bicocca, Italy: "There is good reason to believe that
often our difficulties in attributing a meaning to this number lie ultimately in the lack of
deeper chemical theories and higher level languages and not from esoteric approaches to
the descriptor definition." [web site http://www.disat.unimib.it/chm].

Numerous types of descriptors have been developed to numerically describe chemical
structures. They can be coarsely classified into the groups 0D, 1D, 2D, 3D and other.
These groups are briefly reviewed below.

3.1.2.1 0D descriptors

0D descriptors are constitutional in character and independent of molecular connectivity
and conformations. Typical examples are atom and bond type counts, molecular weight
and sum of atomic van der Waals volumes.

This type of descriptors cannot distinguish most molecular isomers and similar
molecules, e.g. m-nitrophenol from p-nitrophenol.

3.1.2.2 1D descriptors

Counts of functional groups and atom-centred fragments, i.e. fractions of a molecule
involving a few atoms, are often termed 1D molecular descriptors.
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Molecular holograms. Holographic QSAR (HQSAR) is a recently developed
technique that uses molecular holograms as descriptors [Burden, Winkler 1999]. We
have chosen to classify this type of descriptors as 1D since it is based on structure
fragments similar to the other 1D descriptors. The calculation procedure is roughly as
follows: the molecule is divided into fragments of a number of atoms. Typically, a
range like 3 to 8 atoms per fragment excluding hydrogen is used. Each fragment is
mapped to an integer number. The integers are arranged in a number of bins (similar to
a histogram) and the descriptors are the number of fragments in each bin. Typically, the
number of bins used is in the range 20-400. HQSAR descriptors have not been used to
obtain the results in this report.

3.1.2.3 2D descriptors

2D descriptors are dependent on the constitution and connectivity of the molecule but
independent of conformation. Thus, 2D descriptors can be calculated from a 2D-
structure representation of the molecule, e.g. a structure formula of an organic molecule.

2D autocorrelations. An autocorrelation function of the form A(d) = sumij(pipj) can be
used to encode the topology of a molecular graph. pi and pj represent the values of an
atomic property at atoms i and j , respectively, and d is the topological distance between
the two atoms measured in bonds along the shortest path. The function has the useful
property that no matter how large and complex the molecule, it can be encoded in a
fixed length vector of small rank. Typically, only path lengths of 2 to 8 are considered.
Atomic properties include e.g. atomic mass, volume, polarisability and
electronegativity.

BCUT descriptors are calculated as the eigenvalues of the so-called adjacency matrix
with the diagonal elements weighted by atomic masses. The adjacency matrix is a
square matrix with each row/column corresponding to one atom. The ij element is 0 if
atoms i and j are not connected, 1 if they are connected by a single bond, √2 if they are
connected by a double bond etc.

Galvez topological charge indices are similar to the BCUT descriptors but the
diagonal elements of the adjacency matrix are weighted by atomic charges instead of
atomic weights.

Molecular walk counts. Counts walks and self-returning walks in the molecule of
different length.

Various topological descriptors. A diverse set of descriptors, e.g. Wiener type indices
and connectivity indices can be calculated from the 2D molecular structure.
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3.1.2.4 3D descriptors

The 0D, 1D and 2D descriptors discussed above are independent of the 3D geometry of
the molecule. It is reasonable to believe that the 3D structure of a molecule has a large
influence of the biological activity of the molecule. Thus, descriptors that contain
information on 3D structure should be valuable for QSAR studies.

3D descriptors are calculated from the 3D structure of the molecule, i.e. they are
dependent on the conformation, including bond angles, interatomic distances etc. Since
these properties are not available for any given chemical substance, some type of
geometry optimisation must be included in the modelling (and prediction) process if a
generally applicable method is sought.

A relatively simple and fast method that is applicable for small as well as large
molecules is to optimise the geometry of the molecule by molecular mechanics. All
structures used for modelling in this work were optimised by this method. Various force
fields can be used but the MM+ force field is a versatile force field that suits the aim of
general applicability of the results.

The geometry optimisation is performed by a local optimisation algorithm, which
means that it may converge to different local minima depending on the initial geometry.
One approach is to perform optimisations starting with a number of different
conformations and choosing the 3D structure with the lowest energy. Chemical
knowledge can be used to start with reasonable conformations, which makes the
probability of reaching the global energy minimum relatively large, but there is no
guarantee that the global optimum is reached, especially for very large molecules.

It should be noted that it is by no means certain that it is the conformation lowest in
energy that is active in a biological system. This is a drawback of using the geometry
dependent 3D descriptors as is done in this work. There are some methods that take the
possibility of different active conformations into account, e.g. the CoRePa method
discussed below. The conformation problems do not apply to 0D, 1D and 2D
descriptors since these are conformation independent.

Other possible geometry optimisation methods include, semi-empirical (e.g. AM1)
geometry optimisation and quantum mechanical methods, but these require substantially
more computing power and are less suited for large molecules for this reason. In
addition, they require more advanced and expensive software that may not be as widely
available.

Randic molecular profiles characterise molecular shape in the form of a shape profile
(a series of numbers) [Randic 1995, Randic, Razinger 1995].
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Radial distribution functions (RDF) contains information about the interatomic
distances in a molecule, unweighted or weighted by different atomic properties such as
atomic mass, electronegativity, van der Waals volume and atomic polarisability
[Hemmer et al. 1999].

3D-MoRSE descriptors reflect the three-dimensional distribution of different properties
in the molecule. The transformation is derived from calculations used when determining
molecular structure from electron diffraction measurements. The descriptors are
obtained by summing products of atomic properties (mass, electronegativity,
polarisability) weighted by different angular scattering functions and have been shown
to preserve information about e.g. branching [Schur et al. 1996].

WHIM (weighted holistic invariant molecular) descriptors are based on principal
component analysis of atomic co-ordinates with different weighting schemes.
Weighting by atomic mass, electronegatvity, atomic polarisability, van der Waals
volume, electrotoplogical state as well as unweighted analysis gives a total of 99
descriptors. The descriptors are of two types: directional (shape related) and non-
directional (size related) [Livingstone 2000].

GETAWAY (Geometry Topology and Atom Weights Assembly) descriptors are
calculated from a leverage matrix based on atomic co-ordinates called the molecular
influence matrix. Weighted by different atomic properties such as atomic mass,
electronegativity, van der Waals volume and atomic polarisability.

Various 3D geometrical descriptors based on molecular geometry, e.g. sums of
interatomic geometrical distances.

Quantum mechanical/semi-empirical descriptors. As discussed above, geometry
optimisation can be performed by quantum mechanical or semi-empirical methods.
When such methods are applied to a molecule a description of the molecule is obtained
that potentially contains large amounts of information about the properties of the
molecule. A large number of descriptors can be extracted, e.g. energies of molecular
orbitals (HOMO and LUMO), molecular polarisability, charge distribution, heat of
formation, ionisation potential etc. We have not used quantum mechanical/semi-
empirical descriptors to obtain the results presented below.

EVA (Eigenvalue) descriptors are vectors based on eigenvalues corresponding to a
molecule's vibrational modes.
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3.1.2.5 Other calculated descriptors

Estimated physical properties. As noted above, QSAR estimates of physical
properties, most commonly the octanol/water partition coefficient log KOW are used as
descriptors for further QSAR modelling.

3.1.2.6 CoMFA and GRID

There exist specific QSAR descriptors that are based on a more physical model or
understanding of the molecular interactions behind the biological response measured.
Two methods that are closely related and based on superposition and alignment of
molecular structures are Comparative molecular field analysis (CoMFA) and GRID
[Livingstone 2000]. Both involve the use of a molecular probe and calculation of the
interaction between the probe and the molecule that is being analysed. Interactions are
measured at a (usually large) number of points in space defined by a grid placed around
the molecular structure. PLS (see below) is usually used as the regression method in
CoMFA.

CoMFA and GRID require that molecules be aligned relative to some common
reference, e.g. the centre of mass. Aligning molecules with a similar structure is usually
not that difficult, but a more diverse data set poses problems for all methods requiring
alignment [Buydens et al. 1999]. CoMFA and GRID descriptors have not been used in
the present work.

3.1.3 Software

A survey of available software for calculation of molecular descriptors was performed
during the first stages of the project. The survey showed a variety of software packages
of which most are strongly focused on drug discovery and drug design. Examples of
software packages that compute molecular descriptors are Tsar, Dragon, AMPAC,
MolconnZ and MOPAC. The software packages are more or less advanced; some of
them only allow descriptor calculation but a few of them are also capable of QSAR
modelling. An important aspect in the choice of a tool for calculation of descriptors is
the licence fee for the software. Almost all of the software packages are licensed for a
substantial fee, which means that they are not generally available to potential users of
the QSAR models. This would limit the possible use of the models.

Thus, the criteria for our choice of software are calculation of a wide variety of relevant
molecular descriptors at a reasonable price on a computer running Windows. Evaluation
of these criteria led to a choice of the Dragon software. Dragon is a free software
package developed by the Chemometrics and QSAR research group at Milan
University, Italy. Dragon can be used to calculate a large number (1481) of molecular
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descriptors from molecular structures saved in several different file formats, e.g. the
standard format .mol and HyperChem .hin. The descriptors calculated by Dragon are
discussed in Appendix A.

3.2 Modelling methods

This section describes some modelling methods that can be used to relate the chemical
structure to environmental properties. The emphasis is on multivariate regression
methods based on latent variables, since it is one of these methods, partial least squares
(PLS), that has been used to obtain the results presented in this report. Other methods
are discussed but less in-depth. Molecular docking algorithms are not considered at all.

Clustering of substances prior to regression modelling is often beneficial as reported by
several authors, see e.g. [Suzuki et al. 2001]. Classification of substances prior to
modelling has not been performed in this study, since the aim was to obtain models
covering a broad range of chemicals in order to facilitate forecasting of environmental
properties of large sets of new chemicals. This means that the predictive performance,
measured as prediction errors for the environmental properties predicted by the models,
is probably larger than what would be the case if clustering was used prior to regression
modelling. On the other hand, the models are more generally applicable which is
considered to be of greater importance.

3.2.1 Linear regression

The simplest forms of QSAR models are simple univariate linear regression models of
the form

01 kdescriptorkresponse +×=

These very simple models are of limited use since such a simple relationship is usually
inadequate. An extension of this equation is

∑
=

×+=
p

i

i
i descriptorkkresponse

1
0

p is usually chosen as p = 2 or p = 3. The extension allows non-linear relations between
the response and the single descriptor. However, a single descriptor is usually not
sufficient to capture the behaviour of a substance, although successful applications have
been reported for narrow groups of substances, usually with log KOW as the descriptor.
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Multiple linear regression (MLR) can be used to model the dependence of several
descriptors according to the equation

∑
=

×+=
p

i
ii xkkresponse

1
0

xi is the ith descriptor. The number of descriptors, p, can vary widely from p = 2 to
relatively large numbers. However, if many descriptors are used that contain similar
information, i.e. are co-linear, problems with so-called variance inflation occurs, which
means that the models become very sensitive to small variations in the descriptors and
that their predictive performance becomes poor. To solve this problem, different
variable selection algorithms can be used to select a small set of variables with high
information content. Another approach is to use multivariate projection methods,
described in the next section, that handle, and even utilise, the co-linearity in the
descriptor set.

3.2.2 Multivariate projection methods

Typical examples of multivariate projection methods are principal component analysis
(PCA) and partial least squares (PLS). Sometimes this type of methods is denoted
multivariate data analysis (MVA) methods, which is a rather non-descriptive name but
nevertheless adopted here due to convention. More informative names are multivariate
projection methods or latent variable methods.

The fundamental MVA method is PCA. Only a very brief description of PCA is given
here. More detailed introductory descriptions are references [Wold et al. 1987],
[Martens, Naes 1989] and [Esbensen et al. 1996]. PCA decomposes a data matrix X
(a table, in the current context the rows correspond to the substances while the columns
correspond to descriptors) according to:

ETPX T +=

PCA can be considered a co-ordinate transformation from the original variable space to
a model hyper-plane of much lower dimensionality that captures the variance in the data
in the most efficient way. The scores, denoted t or T, are the co-ordinates in the new co-
ordinate system and thus describe the objects (here: chemical substances). The loadings,
denoted p or P, describe the relation between the latent variables (principal
components) that span the model space and original variables.

The matrix E in the equation above contains the residuals, i.e. the part of the data not
captured by the model hyper-plane. Substances that do not conform to the "pattern"
found among the other substances will be badly described by the model and thus have
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large residuals. This can be caused by corrupted data or that the substance in question is
different from the others, which may indicate that a QSAR model based on the rest of
the compounds will not be valid.

The substantial dimensionality reduction achieved by applying PCA to molecular
descriptor data sets leads to enhanced interpretation abilities which facilitate
classification and clustering of substances. This is utilised in a methodology known as
statistical molecular design (SMD), see the separate discussion below.

PCA is not a regression method and cannot be used for finding quantitative
relationships between descriptors and responses. The most common multivariate
regression method is PLS.

3.2.2.1 Partial least squares

PLS is a latent variable based regression method described in several references
[Martens, Naes 1989, Esbensen et al. 1996, Geladi, Kowalski 1986]. PLS has several
benefits compared to ordinary multiple linear regression:

• Co-linearity is handled in a natural way and even utilised to find a robust estimate of
the data structure. This means that variable selection methods are of less importance
than in MLR.

• The latent variable approach means that outlier diagnostics can be obtained both for
training and prediction substances.

The prediction outlier diagnostics obtained has no counterpart in MLR or the non-linear
regression methods, such as artificial neural networks (ANN) discussed below, and are
the greatest advantage of latent variable regression methods according to us. For a new
sample it is possible to calculate a probability that the sample belongs to the sample
population the model was estimated from and thus that the model is likely to yield a
valid prediction. It should be noted that, as shown below, it is quite possible for a model
to yield good predictions although the sample is classified as not belonging to the
model. The opposite, that the sample is classified as belonging to the model and poorly
predicted is uncommon. This is the behaviour required for risk assessment of
substances, since a false prediction that is not detected may lead to a substance being
erroneously classified as likely to be non-toxic and thus that further testing of the
substance is given low priority.

3.2.2.2 Hierarchical modelling

During recent years, hierarchical multivariate modelling methods has undergone rapid
development and several successful applications within process modelling have been
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published [Westerhuis et al. 1998, Qin et al. 2001, Westerhuis, Coenegracht, 1997]. A
hierarchical model structure can be beneficial when several distinct and separate blocks
of data are used for modelling. In process modelling this usually corresponds to process
data from different process sections (reactors, coolers, distillation columns etc.) that
influence product properties in different ways. A separate model (e.g. a PLS model) is
built for each block. The scores calculated from each of these block models are then
used as an input to a top-level hierarchical model. It is out of the scope of this report to
go into any detail regarding the theory for hierarchical multivariate modelling. More
details are given in Westerhuis et al. [1998]. The benefit of using a hierarchical model
structure is that the complexity of the individual models is decreased. Still, the
interaction between different blocks can be modelled and combination of information
between blocks can still be achieved in the top-level model.

In QSAR modelling the different groups of descriptors reflect different aspects of the
substance and can be treated as blocks in a hierarchical model structure. Interpretation
of the top-level model gives insights into which descriptor groups contain most
information about the biological response and how the information is combined.

3.2.3 Non-linear methods

Non-linear methods are not applied in the work presented in this report but several
investigations presented in the literature indicate that they give superior performance to
linear methods in some cases. The most common group of methods is artificial neural
networks (ANN) that exist in a variety of different forms.

It should be noted that ANNs have some drawbacks that sometimes are neglected: the
large number of parameters means that a large amount of training data is needed and
that validation must be performed rigorously in order to avoid over-fitting that leads to
poor model performance. Further, prediction diagnostics are not obtained from ANN
models. One needs to ensure in some other way, independently from the ANN model,
that the model is valid for the substance in question or, which is common practice,
predict and pray.

3.2.4 Common Reactivity Pattern

The modelling methods discussed above are general empirical regression methods that
can in principle be applied to any regression problem and that can be used for QSAR
modelling when applied to molecular descriptors and molecular properties of
substances.

Another approach is Common Reactivity Pattern (CoRePa) [Mekenyan et al. 1997],
which accounts for conformer flexibility in the structures. A brief description of
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CoRePA is as follows. A set of chemicals that are most (or sometimes least) active, i.e.
that exceed (fall short of) a threshold for the biological activity in question, is selected.
Then, a set of parameters that are hypothesised to be potentially important for the
biological activity are identified. These are evaluated for a distribution of conformers
for each compound to give a distribution of the parameter per substance. All
distributions for a certain parameter are superimposed and common regions are
identified. The common regions identified (i.e. for different parameters) constitute the
common reactivity pattern.

3.2.5 Model validation and model accuracy measures

It is important to be able to measure model performance for different reasons, including
ranking of models and estimating the reliability of predictions, when the model is used
on new substances. An accuracy measure is essential in order to be able to trust and use
a model prediction.

The data used to estimate the model, the training set, cannot be used to reliably estimate
model performance. Two validation methods are commonly used:

• Cross-validation. In cross-validation the model is estimated a number of times. In
each round, a part of the training substances are kept out. The toxicities of these
substances are then predicted by the model and compared to the known (reference)
values. The procedure is repeated until all samples have been kept out exactly once
and cross-validation prediction errors have been obtained for all substances.

• Test set validation. Test set validation is used when there are enough data available
to exclude some of it, called the test set, from the model estimation and use it solely
for validation. The model is estimated from the remaining data, the training set.

Test set validation is the most reliable method to estimate the true model performance,
since if the test set is adequately selected, it is exactly equal to future model use;
substances that are completely unknown to the model are predicted. Cross-validation is
a reasonable substitute method if the amount of data is limited but the reliability is
lower; slightly over-optimistic results are usually obtained.

For multivariate modelling methods and some other modelling methods there is a
further complication. Validation is usually used both for model complexity selection
(e.g. the number of PLS components in PLS regression) and for estimation of model
performance. Since the model complexity selection is usually based on a prediction
error criterion this can lead to so-called selection bias, which means that over-optimistic
estimates of model performance are obtained. One way to deal with this problem that
has been used in this work is to use cross-validation to select model complexity and test



Estimating environmentally important properties of chemicals IVL Rapport  B1517
from the chemical structure

17

set validation to estimate model performance. This means that selection bias is avoided
and that very reliable estimates of model performance can be obtained.

Model performance can be measured by different metrics:

• R2 (or R2Y) is the part of the variance explained in the training data, i.e. without
validation. Thus, it does not give information about model performance for new
substances. If R2 is 1 the model explains the data perfectly, if R2 is zero it is as good
to guess a random number as to use the model.

• Q2 is the validation counterpart to R2. It measures the part of the variance explained
in the validation data. Q2 can be calculated both for cross-validation, in which case it
is sometimes denoted Q2

CV, and for test set validation.

• RMSEP (root mean square error of prediction) is a measure of the prediction error
and has the same unit as the response predicted by the model. It is calculated
similarly to a standard deviation and can be used roughly as a standard deviation of
predictions. In the formula, y is the reference value and y�  is the predicted value.

( )
n

yy
RMSEP i ii∑ −

=
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• RMSECV (root mean square error of cross-validation) the cross-validation version
of RMSEP, i.e. corresponding to Q2

CV.

• RMSEE (root mean square error of estimation) the non-validated version of
RMSEP, i.e. corresponding to R2.

3.2.6 Outliers in QSAR models

An outlier in a QSAR model is a substance that is in some way different from the rest
(majority) of the substances used to estimate the QSAR model and for which the model
is not valid. The difference can be caused by different features in the chemical structure,
which is closely related to the discussion above on classification of substances prior to
modelling.

The common explanation of a model outlier is that it is badly predicted (has a large y
residual) but this is a somewhat limited definition since a good prediction may be purely
due to chance, although the substance class in question is not at all present in the
training data. In multivariate statistics, it is common to define three types of outliers:
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• X/Y outliers are outliers in the normal meaning, i.e. substances for which the
relationship between the descriptors (X variables) and the environmental property
(Y variable) is not valid, e.g. due to different toxicity mechanisms.

• X outliers. In short, a substance is an X outlier if the molecular descriptors for this
substance do not conform to the "pattern" (covariance structure) in the (rest of the)
training data. A different pattern in the descriptors indicates that the substance is
different from the training data and thus that the prediction is likely to be inaccurate,
i.e. a substance that is an X outlier is likely to be an X/Y outlier as well.

• Y outliers are only defined for training or test samples. They are substances for
which the reference value of the response is bad for some reason.

It is important to note that outliers can be present both during training (model
estimation) and model use (prediction). Naturally, since no Y value is normally
available during prediction (this is why the model is used to estimate the property in
question), Y cannot be present and X/Y outliers cannot be detected directly.

However, if multivariate prediction methods are used X outliers can be detected during
prediction from the X residuals of the projection (also known as: distance to model in X
space). This is a significant advantage of multivariate projection methods, like PLS, that
facilitates automatic detection of outliers during the use of a QSAR model. This
possibility is a property of the PLS method and not of the descriptors used. Thus, the
advantage is present regardless of the molecular descriptors used although the success is
of course dependent on the information content in the descriptors.

Lipnick [1991] discussed possible reasons for outliers (X/Y only) in QSAR models and
related them to different mechanisms of action.

3.2.7 Statistical Molecular Design (SMD)

Statistical molecular design (SMD) is a method introduced by researchers in Umeå,
Sweden [Eriksson, Johansson 1996, Andersson et al. 2000, Eriksson et al. 2000]. The
purpose of SMD is to apply experimental design methodology in QSAR modelling. The
goal of experimental design is to select a training set for modelling that contains
maximal information given the number of experiments that can be performed. In
QSAR, the experiments correspond to substances but their properties (molecular
descriptors) cannot be designed since they are impossible to control independently in
practically all cases.

SMD uses a large number of candidate structures for which the response (y) variable
does not need to be measured or known. Molecular descriptors are calculated or
measured for all candidate substances and PCA is performed on the data set. The
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principal components that are combinations of the molecular properties are referred to
as the principal properties (PP) of the data set, since they are the combinations that
explain the variation among the molecules in an optimal way.

The design is then performed with respect to the principal properties by selecting a
subset of substances that are most efficient in spanning the substance (or PCA model)
space and thus are the best selection of training set for a QSAR model. The selection
can be done manually from the score plots if the number of principal components
(properties) is three to four or less. An algorithm based on D-optimality is necessary
when a higher number of PCs are used. Such an algorithm can be used for low-
dimensional models as well, but it is often sufficient to select samples manually.

An excellent illustration of the usefulness of SMD and multivariate techniques for
exploration of principal properties can be found in a recent publication [Giraud et al.
2000].

4 Methods

4.1 Toxicity data

4.1.1 Microtox toxicity

The toxicity of various substances to the marine bacterium Vibrio fischerii was taken
from literature [Kaiser, Palabrica 1991]. The EC50 (in mmoles/L) of the bacterial
luminescence inhibition at 15 min exposure was selected as the toxic endpoint and
transformed to the log of the inverse of the millimolar concentration to yield pEC50

values.

The Microtox toxicity of ethylene diamine was also tested experimentally following
essentially the procedure of the manufacturer's manual [Azur Environmental, Carlsbad,
USA (www.azurenv.com), Svenson 1993]. Before testing, the solution of the toxicant
was adjusted to pH 7.3 ± 0.05. The procedure involving a combined duplicate of tests
was repeated three times to generate a log-normal average value of the EC50. Ethylene
diamine obtained from Merck, freshly distilled prior to use, was a kind gift from Fredrik
Rahm at the Department of Organic Chemistry, Royal Institute of Technology in
Stockholm.

4.1.2 Alga toxicity

The unicellular green alga Pseudokirschneriella subcapitata was chosen as the
organism for prediction of alga toxicity. The species, also known by its synonyms
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Selenastrum capricornutum and Raphidocelis subcapitata, is the most widely used
freshwater organism for test of alga toxicity. The inhibition in growth rate was selected
as the toxic endpoint [Nyholm, Källqvist 1989]. The 96 h EC50 values were collected
for a set of substances from published sources [Alexander et al. 1988, Blaylock et al.
1985, Calamari et al. 1979, 1980, 1983, Draper, Brewer 1979, Eloranta 1982, Galassi,
Vighi 1981, Galassi et al. 1988, IUCLID database, 2000 Kuivasniemi et al. 1985,
Macri, Sbardella 1984, Shigeoka et al. 1988]. Before use, the data was transformed as
the logarithms of the inverse EC50 in mmoles/L. EC50 values for some substances were
calculated by non-linear regression of the logarithmic rate from growth data given in
literature [Adams, Dobbs 1984].

4.1.3 Daphnia toxicity

The toxicity of various substances to Daphnia magna exposed for 48 h at specified
conditions was used to derive a prognosis model for a crustacean. Toxicity data were
collected from a published source [Devillers et al. 1987] and used as logarithms of the
inverse in mmoles/L.

4.1.4 Fish toxicity

Data from two fish species were selected to model fish toxicity. The lethal toxicity to
Leuciscus idus was taken from Juncke, Lüdemann [1978], i.e. data dertermined in one
of the two laboratories reported in the literature source, and Lepomis macrochirus from
Buccafusco et al. [1981]. Data represents LC50 at 96 h exposure and the values were
transformed as the logarithms of the inversed millimolar concentrations.

4.2 Descriptor calculation and QSAR modelling

The following procedure was used to obtain the results presented in the following
section.

For each substance:

• The structure of the substance was obtained from Internet databases, e.g.
ChemIDplus2, or, if not available, drawn manually.

• The structure was imported into a molecular modelling software, HyperChem3, and
the minimum energy conformation was determined by molecular mechanics with
the MM+ force field. Different initial conformations were used in order to decrease
the risk of finding local energy minima. The optimised structure was saved.

                                                
2 http://chem.sis.nlm.nih.gov/chemidplus/cmplxqry.html
3 HyperCube Inc., http://www.hyper.com
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For all substances belonging to a data set:

• From the saved structures, 1481 molecular descriptors were calculated for each
substance by the Dragon software4 and the results were saved.

• The descriptor file was extended with the biological response variable.

• The data set was imported into the multivariate modelling software SIMCA P-105

for modelling.

Auto-scaling (also known as unit variance scaling) have been used throughout this
work, since the variables are on different scales and no a priori information about
variable importance was available that could motivate other scaling schemes.

PCA was used to detect trends and groupings in the data. In the cases SMD was used,
samples were selected manually from the score plots as discussed in chapter 5 below for
each model.

Regression was performed by the PLS method. All regression models were validated by
both cross-validation and a separate test set. Cross-validation was used to select model
complexity, and on some occasions to perform variable selection, while the test set was
used solely for estimating prediction error and judging the ability of the model to detect
outliers in the prediction stage. This procedure gives a reliable and objective estimate of
model performance.

An unusually large proportion, usually about 50 % of the available data has been used
for model testing. This is motivated by the fact that the focus of the work is to develop
methodology to obtain reliable QSAR models. The only way to estimate reliability is by
the test set and the estimate is better the more samples are used for this purpose.

5 Results
The research presented in this report was performed with multiple aims. The discussion
in this chapter and chapter 6 is meant to reflect all of these.

• To develop accurate and useful QSAR models for toxicity of chemical substances.

• To develop and evaluate methodology for increasing the reliability of QSAR
predictions

• To investigate the information content and usefulness of different groups and types
of descriptors

                                                
4 http://www.disat.unimib.it/chm/Dragon.htm
5 Umetrics Inc., http://www.umetrics.com
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Before viewing the modelling results it can be interesting to note the distribution and
span of the toxicity values in the data sets used for modelling. These are shown in
Figure 1 below and values are also given in Appendix B. It can be noted that the span
for the fish species and for green alga toxicity was significantly shorter than the span for
the other two.
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Figure 1.  Distribution of reference values used for QSAR modelling.

5.1 Microtox prognosis model

83 substances with reference values between pEC50=-3.3 and pEC50=3.8 were available
for modelling, which means that the substances span 7 orders of magnitude in the
concentration domain.

A preliminary evaluation of Microtox QSAR models showed that ethylene diamine
appeared as a Y outlier; it had a very low predicted pEC50 (about �2 to �3) in all models
while the reference value obtained from the literature was 0.47. Therefore a new test of
the compound was conducted. The average EC50 at 15 min exposure of ethylene
diamine was 17.9 g/L (limits of one standard deviation 17.6-18.2 g/L). This corresponds
to pEC50 = -2.47, which agrees very well with the value predicted by the preliminary
models but is considerably lower than the published value. The higher toxic value
probably depended on insufficient pH control. Now, after testing, pH 7.3 was recorded,
indicating that pH was maintained at a constant and optimal level throughout the 15 min
exposure period. Dissolving the compound in an aqueous solution with low buffering
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capacity changes pH, which in turn affects the toxic behaviour. Therefore a careful pH
control is extremely important. Alkaline condition itself will inhibit the luminescence,
and the amine will probably have a higher toxicity due to a higher proportion as the
dissociated, uncharged species, as recently was shown in alga toxicity for ammonia
[Källqvist, Svenson 2003].

The ability to detect erroneous literature values, which was confirmed by new
experiments, shows the power of QSAR modelling. The new reference value Microtox
pEC50 = -2.47 was used in all further modelling. A list of all Microtox toxicity values
used for modelling and validation is shown in Appendix B.

5.1.1 Prediction outlier detection

A number of QSAR models for Microtox toxicity were developed based on different
sets of descriptors. These were used to both evaluate the performance of the descriptors
and different prediction outlier detection methods. Evaluation of criteria for detection of
outliers during model application (i.e. prediction) is discussed in this section. The actual
modelling results are discussed in the next section.

Outlier detection during prediction, i.e. to detect substances that do not fit in the model
and thus have a high risk of being poorly predicted, is very important. Since the aim of
the prognosis model is typically screening of new substances and prioritising further
testing, it is serious if substances are classified as false negatives. On the other hand, to
predict false positives is less serious, since this will be revealed by the testing performed
as a result of the QSAR prediction. However, also such malpredictions decrease the
efficiency of the screening and prioritisation and should, naturally, be avoided if possible.

Outlier detection during prediction aims at completely avoiding grossly erroneous
predictions. If the substance in question risks being badly predicted, this should be
detected and the prediction should be considered unreliable and not used. Other
methods for screening and prioritisation should then be used, e.g. other QSAR models
or testing toxicity. In outlier detection, it is inefficient but not serious if reliable
prediction is classified as unreliable, i.e. if a substance that is well predicted is classified
as an outlier, since this will lead to prediction by other methods or toxicity testing of the
substance. The opposite mistake, on the other hand, i.e. to classify a bad prediction as
reliable, is serious. This should be kept in mind while reading the discussion in this
section.

When PLS regression is used as the modelling method, as in this work, two measures
can be considered when judging whether or not a new sample belongs to the model. The
first is the distance to the model plane (also called residual magnitude) and the second is
the distance between the model centre and the projection in the model plane. In the
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SIMCA software, the distance to the model plane of a prediction is known as
DModXPS (Distance to Model in X space for the Prediction Set), while also
considering the distance in the model plane leads to the statistic DModXPS+. From
theses distances and the corresponding distances in the training set, it is possible to
calculate a probability that a (new) substance belongs to the model. These probabilities
are known as PModXPS and PModXPS+, respectively, in the software.

In order to classify substances as falling within or outside the domain of the model, one
must choose a significance level. Initial investigations with significance levels
corresponding to 5 % or 1 % theoretical risk of erroneously classifying a valid
prediction as an outlier showed that these levels gave a very large number of erroneous
outlier indications. The reason is probably that the theoretical assumptions, e.g.
normally distributed data, are not fulfilled. In such cases, it is common to use empirical
significance levels in statistical tests.

Results from further investigations with both PModXPS and PModXPS+ at 0.5 % and
0.1 % risk levels are shown in Table 1 for 9 different PLS models based on different
sets of descriptors. The RMSEE and RMSEP values in the second and third column are
the root mean squared error of estimation for the training data and the root mean
squared error of prediction for the full test set. In addition, the table shows the number
of outlying substances in the test set according to each method and the RMSEP after
these were removed from the test set.

RMSEE is expected to be significantly lower than RMSEP since it is calculated from
predicting the same substance from which the model parameters were estimated. The
RMSEP values are aggregated values for the whole prediction set but it is clear from
plots of predicted versus measured toxicities that the high RMSEP values for some
models are caused by one or a few substances being poorly predicted by the model, i.e.
they are outliers. This is visualised in Figure 2 and even more clearly in Figure 3.

No differences were encountered between the PModXPS and PModXPS+ methods as
shown in the table. Therefore, this is not further discussed but the following discussion
is devoted to the choice of significance level and the reliability of the outlier detection
method.
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Table 1. Outlier detection in the Microtox toxicity data set.

PModXPS+ 0.5 % PModXPS 0.5 % PModXPS+ 0.1 % PModXPS 0.1 %

Modela RMSEE RMSEP outliers RMSEPb outliers RMSEPb outliers RMSEPb outliers RMSEPb

PLS2 0.34 0.64 7 0.53 7 0.53 7 0.53 7 0.53

PLS3 0.46 0.73 7 0.65 7 0.65 5 0.64 5 0.64

PLS4 0.56 0.77 7 0.66 7 0.66 6 0.70 6 0.70

PLS5 0.42 1.06 11 0.62 11 0.62 7 0.58 7 0.58

PLS6 0.65 3.72 5 0.82 5 0.82 4 0.82 4 0.82

PLS7 0.52 0.98 7 0.66 7 0.66 7 0.66 7 0.66

PLS8 1.03 0.95 9 0.89 9 0.89 8 0.90 8 0.90

PLS9 0.50 1.47 6 0.74 6 0.74 5 0.74 5 0.74

PLS10 0.38 0.86 3 0.54 3 0.54 2 0.55 2 0.55

a For explanation of model notation see 5.1.2 below.
b RMSEP for the test set after removal of the outliers indicated by this method.

In Figure 2 and 3 the substances have different symbols according to their probability of
belonging to the model according to PModXPS+. Substance marked with squares are
outliers according at both the 0.1 % and 0.5 % levels, while the substances marked with
diamonds in Figure 3 are outlier only at the 0.5 % level.

It is clear from Figure 2 that at least p,p-DDT (ppDDT) and carbon tetrachloride (ccl4)
are poorly predicted by the model PLS2. However, 5 more substances are classified as
outliers although they are quite well predicted: tetrachloroethene (teke), nitrilotriacetic
acid (nta), methanol (meoh), dichloromethane (dkm), and dioxane (dioxan). There are
two possible reasons:

1. They are outliers in the model that are reasonably well predicted 'by chance'. This
should be the case for at least methanol and nitrilotriacetic acid. Methanol is an
extreme sample with a toxicity value lower than any compound in the training set.
Thus the model is extrapolated which is uncertain and the outlier classification is
correct although the prediction happens to be correct in this case. Nitrilotriacetic
acid with its large number of polar bonds in such a small molecule is different from
substances in the training set.

2. They are falsely classified as outliers although they are similar to the compounds in
the training set. This can be the case for dioxane that is not structurally dissimilar to
substances in the training set.
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For dichloromethane and tetrachloroethene it is questionable if they are outliers or not.
There were relatively few smaller chlorinated compounds in the training data
(chloroform, trichloroethene).
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Figure 2. Measured versus predicted Microtox pEC50 values for the PLS2 model based on all
descriptors. Substances marked with squares have a probability of less than 0.1 % of
belonging to the model according to PModXPS+.

For the model PLS5 visualised in Figure 3 similar results were obtained at the 0.1 %
level (blue substances):

• p,p-DDT, methanol, CCl4 and tetrachloroethene were inaccurately predicted and this
is detected by the outlier detection method.

• Diethylether, nitrilotriacetic acid and 1,3,5-trichlorobenzene were correctly
predicted but nevertheless classified as outliers. For nitrilotriacetic acid, this should
be considered a coincidence as discussed for the PLS2 model above. For the other
two substances the classification is more questionable and they are probably falsely
detected as outliers. Nevertheless, the RMSEP of the test set is decreased from 1.06
to 0.58 when the substances indicated as outliers were removed, which according to
our experience was in reasonable relation to the RMSEE of 0.42.

The substances classified as outliers only at the 0.5 % level in model PLS5 (diamonds
in Figure 3), dichloromethane, 4-chlorophenol, 3,5-dichlorophenol and 1,2,3-
trichlorobenzene, were all predicted correctly by the model. At least the three aromatic
compounds should not be outliers considering their structural similarity to the training
set. Similar results were obtained for other models (not shown). It can be noted in Table
1 that although more outliers were detected at the 0.5 % level for several models, the
RMSEP of the test set has not decreased significantly.
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Figure 3. Measured versus predicted Microtox pEC50 values for the PLS5 model based on 2D
autocorrelation descriptors. Substances marked with squares have a probability of less than
0.1 % of belonging to the model according to PModXPS+ and are classified as outliers.
Substances marked with diamonds have probabilities between 0.1 %-0.5 %.

From inspection of predicted versus measured plots for all the other models investigated
it was observed that not a single clear outlier was missed at the 0.1 % level. Similar
results as those discussed above were obtained when evaluating outlier detection
method for the models based on systematic selection of training set discussed in 5.1.3
(not shown).

To summarise, it can be concluded that outlier detection at the 0.1 % level is sufficiently
safe and more efficient than at the 0.5 % level. In the rest of the report, outlier detection
at the 0.1 % level with the PModXPS+ statistic has been used.

5.1.2 Random training set selection

A number of QSAR models for Microtox toxicity were developed based on different
sets of descriptors. The complete data set collected consisted of 83 substances, see
Appendix B. Initial modelling showed that 1-pentadecanol, which was the longest
carbon chain in the data set, was difficult to fit into a model with the rest of the
substances and, hence, it was removed. The remaining 82 substances were split non-
systematically into a training set and a test set each comprising 41 substances. To leave
50 % of the substances in a test set is unusual but was motivated by the intention to
develop methodology for reliable and robust QSAR predictions. The only way to
objectively test the reliability of the models is to use a test set and the larger the test set
the better the estimate of the degree of reliability. Information about the models
developed is shown in Table 2. No outliers were removed from the training set for any
of the models.
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Table 2. Model information for PLS models developed for Microtox pEC50 with random selection of
training set.

Model Descriptorsa kb R2Y Q2Yc RMSEE RMSEP Outliers
(test set)

RMSEPd

PLS2 all 4 0.95 0.87 0.34 0.84 7 0.53

PLS3 Constitutional +
topological + mol.
walk counts

2 0.91 0.83 0.46 0.73 5 0.64

PLS4 BCUT 4 0.87 0.79 0.56 0.77 6 0.70

PLS5 2D autocorr. 4 0.93 0.71 0.42 1.06 7 0.58

PLS6 RDF 4 0.83 0.62 0.65 3.72 4 0.82

PLS7 3D-MoRSE 4 0.89 0.77 0.52 0.98 7 0.66

PLS8 WHIM 2 0.56 0.30 1.03 0.95 8 0.90

PLS9 GETAWAY 4 0.90 0.65 0.50 1.47 5 0.74

PLS10 PLS3-PLS9 scoresf 1 0.94 0.92e 0.38 0.86 2 0.55

a See 3.1
b Number of PLS components
c Relative explained variance of the response determined by cross-validation. Seven cross-validation
segments were used
d RMSEP of the test set after removal of the detected outliers
e Should not be compared with the other Q2Y values since the cross-validation is based on non-validated
scores. RMSEP values from test set prediction are comparable, however.
f Top level hierarchical model based on the scores from PLS3-PLS9, see 3.2.2.2.

From the table, it can be noted that the number of outliers detected during prediction
was between 2 and 7. It is not surprising that outliers were detected, since the training
and test data were selected non-systematically. It can be expected that some of the test
substances do not fall within the domain of the model, cf. the discussion about models
based on systematic training set selection in 5.1.3 below. In addition, it was not
surprising that the performance and the number of outliers detected are different in
different models since they were based on different descriptors that reflect different
molecular properties.

None of the individual descriptor groups (PLS3-PLS9) yielded models that were as
good as models based on all data (PLS2 and PLS10), which indicates that a combination
of information from different descriptor groups were needed. The best single descriptor
group was 2D autocorrelations that include Broto-Moreau, Moran and Geary
autocorrelations of lag 1-8.
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The model based on all descriptors directly (PLS2) and the model based on all models
but in a hierarchical model structure had the same performance within statistical
uncertainty. The RMSEP values for test data were about 0.5 log-units, i.e. predictions
were correct within a factor 3 on the concentration scale, which was considered to meet
the needs of screening models. These results should be compared to those based on
systematic training set selection in 5.1.3 below.

It is worth noting that the PLS2 model has 7 samples classified as outliers. As discussed
above and shown in Figure 2, several of these were in reality predicted well by the
model. In Figure 4, the predictions of the PLS10 model are shown. As seen in the figure
and in Table 2, only two substances were classified as outliers. It is clear from the figure
that these two substances were the two that were inaccurately predicted. Hence, the
outlier detection performed well for this model. Predicted versus measured values after
removing the two outliers, which illustrate the good model performance, are shown in
Figure 5. Please note the discussion about outlier detection in hierarchical models in the
Lepomis data in 5.4 below.
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level model (PLS10) after removal of two outliers (p,p-DDT and CCl4). RMSEP = 0.55
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5.1.3 Systematic training set selection

To further illustrate the importance of a representative training set, Microtox pEC50

prognosis models were developed based on a systematically selected training set. The
approach used for training set selection was similar to statistical molecular design
(SMD, see 3.2.7) but the selection was done graphically from the score plots rather than
mathematically based on a D-optimality criterion, which is common in SMD.

A PCA model based on all descriptors was used as basis for the selection. To facilitate
comparison to the models based on random training set selection, the same sizes of
training and test set, 41 substances each, was used. The score plots used and the selected
substances are shown in Figure 6



Estimating environmentally important properties of chemicals IVL Rapport  B1517
from the chemical structure

31

-50

-40

-30

-20

-10

0

10

20

30

40

50

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

t[2
]

t[1]

aceton

aniline
balk

bensen

bkl

buam1buoh1
butanon

cb

ccl4chcl3

cp2cp3cp4ct2
dcb12dcb13dcb14

dcp23dcp24dcp25dcp26dcp34dcp35

deoh1
deoh2

dep

dioxan

dke12
dkm

dma24

dnb13

dnb35

dnt24

dodeoh1

etb

etenamin
eter

etoh

hpoh1hxoh1

kresol3

lindan

meoh

mepoh21

mnt2
mnt4nb

nooh1

nta

ocoh1

pcp

pedion24

peoh1peoh3

phenol

ppddt

prooh1

pyridin sds

tcb123tcb124tcb135
tcp234tcp235tcp236tcp245tcp246tcp345tecb1234tecb1235tecb1245

tecp2345tecp2346tecp2356

tedeoh1

teketke

toluene

trideoh1unoh1

xylen12

-30

-20

-10

0

10

20

30

40

50

-30 -20 -10 0 10 20 30 40

t[4
]

t[3]

aceton

aniline

balk
bensen

bklbuam1buoh1butanon

cb

ccl4

chcl3

cp2cp3cp4
ct2

dcb12dcb13dcb14dcp23dcp24dcp25dcp26dcp34dcp35deoh1
deoh2

dep

dioxan dke12

dkm

dma24
dnb13

dnb35dnt24

dodeoh1

etb etenamin
eter

etoh

hpoh1hxoh1kresol3

lindan
meoh

mepoh21mnt2mnt4

nb nooh1

nta

ocoh1

pcp

pedion24
peoh1

peoh3

phenol

ppddt

prooh1
pyridin

sdstcb123tcb124
tcb135tcp234tcp235tcp236tcp245tcp246tcp345 tecb1234tecb1235tecb1245tecp2345tecp2346tecp2356

tedeoh1

teke
tketoluene

trideoh1
unoh1

xylen12

Figure 6. PCA score plots and systematic training set selection for Microtox pEC50 models. The
training set (41 of 82 substances) is marked by squares.

Modelling results are shown in Table 3 and can be compared to those in Table 2. It is
clear that, as expected, the number of detected outliers was much lower when
systematic training set selection was used, since the selection was done to avoid
extrapolation. The models based on all descriptors, PLS2 and PLS12, had
approximately the same RMSEP for test data: 0.53 and 0.54 respectively, but the
number of outliers detected for PLS2 was 7 and only 3 for PLS12. The same trend is
visible in the results from the top-level hierarchical models, PLS10 and PLS20. The
RMSEPs were 0.55 and 0.64 and the number of outliers 2 and 0, respectively.
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Table 3. Model information for PLS models developed for Microtox pEC50 with systematic selection
of training set.

Model Descriptorsa kb R2Y Q2Yc RMSEE RMSEP outliers RMSEPd

PLS12 all 4 0.96 0.83 0.31 0.54 3 0.54

PLS13 Constitutional +
topological + mol.
walk counts

4 0.94 0.83 0.38 0.58 2 0.56

PLS14 BCUT 3 0.80 0.72 0.70 0.81 0 0.81

PLS15 2D autocorr. 1 0.64 0.53 0.92 0.96 0 0.96

PLS16 RDF 2 0.73 0.58 0.82 0.94 4 0.92

PLS17 3D-MoRSE 5 0.90 0.70 0.52 0.85 2 0.71

PLS18 WHIM 2 0.63 0.48 0.94 1.05 1 1.03

PLS19 GETAWAY 3 0.82 0.63 0.66 0.89 2 0.88

PLS20 PLS13-PLS19 scoresf 2 0.92 0.87e 0.44 0.64 0 0.64

a See 3.1
b Number of PLS components
c Relative explained variance of the response determined by cross-validation. Seven cross-validation
segments were used
d RMSEP of the test set after removal of the detected outliers
e Should not be compared with the other Q2Y values since the cross-validation is based on non-validated
scores. RMSEP values from test set prediction are comparable, however.
f Top level hierarchical model based on the scores from PLS13-PLS19, see 3.2.2.2.

The training set selection was performed from a PCA model based on all descriptors.
Hence, it is not necessarily so that the substances selected span the X space optimally,
when only one of the descriptor groups are used for modelling, since different groups
reflect different molecular properties. Thus, ideally a PCA model based on exactly the
same descriptors as the quantitative PLS model should have been used. However,
selection based on a single PCA model was considered to be enough for the purposes of
this work. In addition, if different training and test sets had been used, it would have
precluded thorough validation of the hierarchical model, since the different block
models contributing would have been based on different training data.

In conclusion, about the same prediction error, slightly above 0.5 pEC50 units, was
obtained from the models based on systematic training set selection as for models based
on random training set selection. However, the number of outliers decreased when
systematically selected training data was used, since the risk of model extrapolation
decreased.
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5.2 Green alga toxicity prognosis model

45 substances with reference values between pEC50 = -0.2 and pEC50 = 4.0 were used
for modelling. For both random and systematic selection of the training set, 24
substance were used for training and the remaining 21 substances for testing the model.

5.2.1 Random training set selection

The models developed from random training set of 24 substances are shown in Table 4.
The PLS10 model based on all descriptors gave an RMSEP of the test set of 0.50 pEC50

units after removal of four outliers that were found by the outlier detection method
discussed in 5.1.1. The model based on only BCUT descriptors (PLS12) had a lower
RMSEP but a higher number of substances did not fit into the model. Thus, we
conclude that as discussed above for the Microtox models, a combination of information
from different descriptor groups was needed.

Table 4. Model information for PLS models developed for alga toxicity pEC50 with random
selection of training set. No prediction errors were calculated for models with Q2

cv<0.5.

Model Descriptorsa kb R2Y Q2Yc RMSEE RMSEP outliers RMSEPd

PLS10 all 3 0.87 0.59 0.39 0.81 4 0.50

PLS11 Constitutional +
topological + mol.
walk counts

3 0.82 0.65 0.44 0.75 2 0.56

PLS12 BCUT 7 0.95 0.74 0.27 1.05 7 0.35

PLS13 2D autocorr. 1 0.67 0.56 0.58 0.78 5 0.61

PLS14 RDF 4 0.85 0.72 0.42 0.80 4 0.51

PLS15 3D-MoRSE 1 0.70 0.38

PLS16 WHIM 3 0.77 0.49

PLS17 GETAWAY 1 0.67 0.44

PLS18 PLS11-PLS17 scoresf 2 0.92 0.84e 0.30 0.82 1 0.70

a See 3.1
b Number of PLS components
c Relative explained variance of the response determined by cross-validation. Seven cross-validation
segments were used
d RMSEP of the test set after removal of the detected outliers
e Should not be compared with the other Q2Y values since the cross-validation is based on non-validated
scores. RMSEP values from test set prediction are comparable, however.
f Top level hierarchical model based on the scores from PLS11-PLS17, see 3.2.2.2.
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5.2.2 Systematic training set selection

Of the models based on a systematically selected training set, shown in Table 5, the best
predictive ability was obtained when all descriptors were used (model PLS1). Despite
the systematic selection of training set, outliers were detected in the test set but it was
noted that they were fewer than in the models based on a randomly selected training set,
as expected. A further example of how well the outlier detection method worked, can be
found in Figure 7, which shows the test set predictions for the model PLS1. Of the three
substances detected as outliers, two had grossly erroneous predictions.

Table 5. Model information for PLS models developed for alga toxicity pEC50 with systematic
selection of training set. No prediction errors were calculated for models with Q2Y<0.5.

Model Descriptorsa kb R2Y Q2Yc RMSEE RMSEP outliers RMSEPd

PLS1 all 4 0.88 0.69 0.42 0.56 3 0.39

PLS2 Constitutional +
topological + mol.
walk counts

3 0.8 0.53 0.52 0.87 2 0.43

PLS3 BCUT 5 0.9 0.73 0.39 0.61 3 0.55

PLS4 2D autocorr. 2 0.73 0.55 0.59 0.67 1 0.68

PLS5 RDF 2 0.77 0.63 0.54 0.69 2 0.48

PLS6 3D-MoRSE 5 0.9 0.56 0.4 0.5 4 0.51

PLS7 WHIM 3 0.72 0.21

PLS8 GETAWAY 2 0.71 0.6 0.61 0.61 0 0.61

PLS9 PLS2-PLS8 scoresf 1 0.85 0.78e 0.43 0.55 1 0.52

a See 3.1
b Number of PLS components
c Relative explained variance of the response determined by cross-validation. Seven cross-validation
segments were used
d RMSEP of the test set after removal of the detected outliers
e Should not be compared with the other Q2Y values since the cross-validation is based on non-validated
scores. RMSEP values from test set prediction are comparable, however.
f Top level hierarchical model based on the scores from PLS2-PLS8, see 3.2.2.2.
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Figure 7. Measured versus predicted green alga pEC50 values for the test set of the model PLS1
based on all descriptors. Substances marked with squares are those detected as outliers by
the outlier detection method used.

5.3 Daphnia toxicity prognosis model

The data set available for Daphnia pEC50 prognosis model development consisted of 93
substances with a wide range of pEC50 values spanning 7 orders of magnitude on the
concentration scale, from �2.6 to 5.5.

Models based on all descriptors were built with both random and systematic training set
selection as for Microtox pEC50. In both cases 46 substances were selected as the test
set, leaving 47 substances in the training set. The results are shown in Table 6.

Table 6.  Model information for PLS models developed for Daphnia pEC50.

Model Training set ka R2Yb Q2Yc RMSEE RMSEP Outliers
(test set)

RMSEPd

PLS1 Random 3 0.93 0.84 0.37 1.92 13 0.34

PLS10 Systematic 3 0.93 0.84 0.44 0.36 2 0.36

a Number of PLS components
b Relative explained variance of the response in the training set
c Relative explained variance of the response determined by cross-validation. Seven cross-validation
segments were used
d RMSEP of the test set after removal of the detected outliers.

The accuracy of the models was very good with RMSEP values of approximately 0.35
pEC50 units, which corresponded to a factor 2.3 in concentration units. This is more than
enough for a screening model. The difference between random and systematic selection
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of training set was the same as observed for the Microtox toxicity models. The model
performance as measured by prediction of the test set was approximately equal for both
models but the model based on a randomly selected training set gives a higher number
of prediction outliers (13 of 46 substances). As discussed above, this occurs because the
training set does not span the space of the test set, i.e. because the model is extrapolated.
Again, this stresses the need for outlier detection capabilities.

5.3.1 Simple variable selection

In order to investigate the possibility of decreasing the number of descriptors used in the
modelling, a simple variable selection algorithm was used. The variables were ranked
according to their importance as calculated by:

( )∑
=

=
a

i
iijj SSwZ

1

2

where Zj is the importance of variable j, wij is the PLS loading weight of variable j for
component i, SSi is the explained sum of squares for the ith PLS component and a is the
number of PLS components in the model. This algorithm is simple and naïve since it
does not take into account that the most important variables found may very well
contain the same information. Algorithms for stepwise variable selection that can be
used to find combinations of variables that contain complementary information exist but
has not been used in this work, since variable selection was not the primary objective.
The ten most important variables in the PLS10 model based on systematic selection of
training data were: BEHm1, XMOD, MW, X2sol, BEHm2, X0v, X1sol, RDF045p,
X0sol and RDF045v. The ten most important variables in the PLS10 model based on
random selection of training data were: X1sol, XMOD, VEA1, VED1, VEv1, VEp1,
VEe1, VEZ1, VEm1 and X0sol6.

It is interesting to note the different descriptors selected depending on the training set.
The descriptor set selected for the model based on the more diverse, systematically
selected training set, was more diverse. It contained BCUT descriptors, connectivity
indices, molecular weight and radial distribution functions, which reflected that a
combination of information from different descriptor groups improved prediction as
discussed for the Microtox toxicity models in 5.1. The 10 descriptors selected from the
model based on random selection of training data were of only two types: connectivity

                                                
6 MW is molecular weight. Descriptors starting with (cf. 3.1): BEHm are BCUT descriptors weighted by
atomic mass, X are different types of connectivity indices, RDF are radial distribution function
descriptors, VE are topological descriptors based on eigenvalues of the adjacency matrix or different
weightings of the distance matrix.
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indices and topological descriptors based on eigenvalues of the adjacency matrix or the
distance matrix.

Information for the models based on variable selection from the models in Table 6 is
shown in Table 7. The PLS11 models based on variable selection from the PLS10
model has about the same performance as the PLS10 model while the performance of
the PLS2 model based on variable selection from the PLS1 model has lower predictive
ability. This was interpreted as a consequence of the lower diversity of the selected
variables that originate in the lower diversity in the training data, which had two effects:

1. The variables selected do not contain enough information about the biological
response, which is reflected in the higher RMSEE of model PLS2 compared to
model PLS1.

2. The reduced variable set of model PLS2 does not allow efficient outlier detection as
indicated that only one outlier is detected although the predicted versus measured
plot indicates that several others exist, as can be expected since this is the case for
model PLS1.

Table 7. Model information for PLS models developed for Daphnia pEC50 based on a reduced
descriptor set.

Model Training set ka R2Yb Q2Yc RMSEE RMSEP Outliers

(test set)

RMSEPd

PLS2 Random 1 0.97 0.84 0.56 0.83 1 0.82

PLS11 Systematic 1 0.90 0.87 0.53 0.41 1 0.42

a Number of PLS components
b Relative explained variance of the response in the training set
c Relative explained variance of the response determined by cross-validation. Seven cross-validation
segments were used
d RMSEP of the test set after removal of the detected outliers

In conclusion, the studied data set indicated that it is dangerous to perform variable
selection on a data set that is not completely representative for future application of the
model. Although not all descriptors included in the PLS model contain significant
information about the biological response modelled, they can add information that is
useful when detecting substances that are not covered by the model. In real application
of QSAR models for screening, the substances for which the model will be used are not
known beforehand. Hence, variable selection should be done with caution if outlier
detection is a consideration. This is a modelling aspect that has been neglected in most
previous QSAR work.
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5.4 Fish toxicity prognosis model

The data set available for modelling of toxicity to Lepomis macrochirus is smaller than
for e.g. Microtox toxicity. A total of 55 substances with reference values were available.
The pLC50 values of these substances were between �0.6 and 3.2.

Initial modelling showed that one of the substances, 1,3-dichloropropene, was badly
predicted by all models although several similar substances were available in the data
set and no indication of the substance as an X outlier was obtained. This led to the
suspicion that the substance is an Y outlier, i.e. that the published toxicity used as
reference value, pLC50 = 1.26, was inaccurate. No other published value of toxicity to
Lepomis macrochirus was found in the literature but a 96 h LC50 of 0.239 g/l for another
species, Fathead Minnow (Pimephales promelas), was found [Geiger et al. 1990]. This
value corresponds to p[LC50 mmol/l] = - 0.3. The difference is much larger than what
can be expected from the fact that the tests are performed on two different fish species.
Further, a comparison of Lepomis macrochirus toxicity values with structurally similar
compounds, e.g. 1,1-dichloropropane, 1,1-dichloroethylene (Appendix B), showed that
these had significantly lower pLC50 values than 1,3-dichloropropene. This is no
evidence of a bad value for 1,3-dichloropropene, but in combination with the toxicity
for Fathead Minnow, it is a strong indication that the value is not reliable. Thus, 1,3-
dichloropropene was excluded from all further modelling and was not included in the
models presented in this section.

5.4.1 Lepomis macrochirus toxicity model with random training set
selection

A number of models were developed based on different descriptors as shown in Table 8.
The randomly selected training set consisted of 32 substances, leaving 22 substances in
the test set. It is clear that the models developed based on single descriptor groups had
very poor performance, which was not always the case for the Microtox and Daphnia
responses. There were two likely explanations for this and both probably contributed to
the poor performance:

1. The response was supposedly more complex since fish are higher organisms than
bacteria, algae and Daphnia.

2. The data set was of lower quality for modelling since the spanned effect range was
smaller than for the other responses. This is further discussed in 6 below.

The models PLS10 and PLS18 that were both based on all descriptors but with different
model structures had better performance in terms of Q2 and RMSEP values. For the
PLS10 model, the RMSEP was significantly lower than the RMSEE, which is
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unexpected and should be attributed to chance, since the training and test sets were
chosen randomly. Model performance was considered satisfying and fulfilling the need
for screening of substances. To illustrate the results, predicted vs. measured pLC50

values for the PLS10 model training and test sets are shown in Figure 8.

It should be noted that PLS10 and PLS18 had very similar predictive properties,
although outlier detection properties differed. If the 4 outliers from PLS10 are removed
from the PLS18 test set (one of them was already detected in PLS18), the resulting
RMSEP = 0.38, which was practically the same as the RMSEP = 0.34 obtained for
PLS10. Hence, prediction was adequate but outlier detection seemed to be inadequate in
the hierarchical model. We would again like to emphasise that outlier detection is as
important as predictive ability, since no model will cover every substance that people
try to use it for.

Table 8. Model information for PLS models developed for Lepomis pLC50 with random selection of
training set. No calculation of prediction errors were made for models with Q2Yc <0.5.

Model Descriptorsa kb R2Y Q2Yc RMSEE RMSEP Outliers
(test set)

RMSEPc

PLS10 all 2 0.79 0.70 0.48 4.02 4 0.34

PLS11 Constitutional +
topological + mol.
walk counts

2 0.73 0.61 0.54 0.92 3 0.57

PLS12 BCUT 3 0.67 0.54 0.60 0.75 1 0.75

PLS13 2D autocorr. 2 0.69 0.43

PLS14 RDF 2 0.45 0.16

PLS15 3D-MoRSE 1 0.47 0.30

PLS16 WHIM 2 0.67 0.40

PLS17 GETAWAY 2 0.62 0.39

PLS18 PLS11-PLS18 scorese 1 0.76 0.73f 0.50 3.79 1 0.75

a See 3.1
b Number of PLS components
c Relative explained variance of the response determined by cross-validation. Seven cross-validation
segments were used
d RMSEP of the test set after removal of the detected outliers
e Top level hierarchical model based on the scores from PLS3-PLS9, see 3.2.2.2.
f Should not be compared with the other Q2Y values since the cross-validation is based on non-validated
scores. RMSEP values from test set prediction are comparable, however.

It is likely that all descriptors were not needed to obtain results similar to those from
PLS10, although Table 8 clearly shows that a single descriptor group was not enough.
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Investigations regarding the descriptor groups actually needed have not been performed
as a part of this work. As noted in the discussion on outlier detection in 5.1.1, it was
definitely not only predictive ability that should be considered when selecting variables,
since descriptors that did not contribute significantly to predictive ability may contain
information that can help in detecting substances that were not covered by the model.
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Figure 8. Predicted vs. measured toxicities for the PLS10 model: training data (top) and test set after
removal of four outliers (bottom).



Estimating environmentally important properties of chemicals IVL Rapport  B1517
from the chemical structure

41

5.4.2 Lepomis macrochirus toxicity model with systematic training set

Systematic selection of training data was performed based on a PCA model of all
substances and all descriptors as discussed in 3.2.7 and for Microtox models in 5.1.3.
The same sizes of the training and test sets were used as for the random selection, i.e. 32
substances for training and 22 substances for testing.

When modelling was attempted it was clear from the diagnostics available in PLS that
two of the substances selected for training could not be used for model estimation, since
they were outliers that distorted the model structure. These two substances, 2,4,6-
trinitrophenol and dibutylphthalate, were not discarded but moved to the test set. Note
that the fact that they did not fit in the model during estimation should mean that they
were detected as outliers during prediction. Moving them to the test set thus gave
further testing of the outlier detection possibilities of the different models.

The modelling results, shown in Table 9, were similar to those obtained for random
training set selection in 5.4.1 above. No single descriptor group contained enough
information to give a good model, but the model based on all descriptors, PLS1, gave a
good accuracy with an RMSEP of 0.40 for the test set after removal of outliers. It is
surprising that the number of outliers was in general higher for the models presented in
this section, based on systematic selection of training data, compared to the models
based on a randomly selected training set. The opposite would have been expected and
this was also the result when the two training set selection methods were compared for
other responses (Microtox in 5.1.2 and 5.1.3, Alga in 5.2 and Daphnia in 5.3).

Predictions for the test set, including outliers, for model PLS1 are shown in Figure 9. It
is clear that the two substances removed from the training set, 2,4,6-trinitrophenol and
dibutylftalate, were badly predicted and that this was detected by the outlier detection
method used. In addition, 1,2-diphenylhydrazine and hexachloroethane, were poorly
predicted, which was detected. The remaining four substances that were indicated as
outliers were not inaccurately predicted, but as discussed before, a false positive
prediction is better than a false negative.
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Table 9. Model information for PLS models developed for Lepomis pLC50 with systematic selection
of training set. No calculation of prediction errors were made for models with Q2<0.5.

Model Descriptorsa kb R2Y Q2Yc RMSEE RMSEP Outliers
(test set)

RMSEPd

PLS1 all 2 0.88 0.78 0.37 0.92 8 0.40

PLS2 Constitutional +
topological + mol.
walk counts

2 0.87 0.74 0.39 1.10 6 0.69

PLS3 BCUT 4 0.87 0.67 0.40 0.96 2 0.89

PLS4 2D autocorr. 2 0.82 0.65 0.45 0.98 4 0.96

PLS5 RDF 2 0.52 0.31

PLS6 3D-MoRSE 2 0.73 0.60 0.55 1.03 4 0.67

PLS7 WHIM 2 0.62 0.31

PLS8 GETAWAY 2 0.68 0.38

PLS9 PLS2-PLS8 scorese 1 0.85 0.82f 0.40 1.21 3 0.70

a See 3.1
b Number of PLS components
c Relative explained variance of the response determined by cross-validation. Seven cross-validation
segments were used
d RMSEP of the test set after removal of the detected outliers
e Top level hierarchical model based on the scores from PLS2-PLS8, see 3.2.2.2.
f Should not be compared with the other Q2Y values since the cross-validation is based on non-validated
scores. RMSEP values from test set prediction are comparable, however.

Similar to the results for random training data selection, the two models based on all
data, PLS1 and PLS9, had similar predictive ability but differed in outlier detection
properties. If the outliers detected in PLS1 were removed from the PLS9 test set, one
obtains RMSEP = 0.37, i.e. very close to the value for PLS1.
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Figure 9. Predicted vs. measured pLC50 values for the test set for model PLS1

5.4.3 Leicuscus idus toxicity models

The following toxicity data was not used due to large differences (more than 0.5 log
units) in LC50 values between two sets of data reported in Juncke and Lüdemann [1978].
The differences indicated uncertainties in fish toxicity determinations, that would
obscure QSAR modelling: acrolein, amylacetate, benzaldehyde, carbontetrachloride,
chlorobenzene, cycloheptene, cyclohexane, cyclohexene, cyclohexylamine,
isobutyronitrile, isopropylbenzene and lindane. Dodecylbenzene was omitted since its
LC50 value was higher than its water solubility. In addition, ethyleneimine, acetone
cyanohydrine, propargyl alcohol and hydroquinone were not used due to strange
behaviour during initial modelling. The reason for this was not clear, but a possible
explanation could be erroneous reference values or very specific mechanisms of toxic
action that were not represented among other substances in the data set. The remaining
data set consisted of 117 substances with pLC50 values between �2.1 and 3.2. Of these
47 were used as test set and the remaining 60 as training data.

The models had poorer predictive ability as measured by cross-validation Q2 (cf. Table
10) compared to most other models presented in this report. Q2 values of less than 0.5
were usually considered to indicate a poor fit. Nevertheless, the RMSEP values were
not much larger than those in the Microtox toxicity models. The reason is that Q2

measures relative explained variance while RMSEP are absolute measures. The
reference value range was smaller for Leuciscus idus toxicity than for e.g. Microtox
toxicity.

However, it can be noted that the RMSEP values of the test sets were not different from
the RMSEE values. The latter values were calculated from training data and
corresponded to the R2 values in the table. We have not calculated Q2 values for the test
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set but it was clear that they were close to the R2 values. Thus cross-validation is
probably slightly pessimistic in this case due to the low number (7) of segments used. It
should be noted however, that we used cross-validation only to select the model
complexity as discussed in 3.2.5 and not to measure model performance.

Table 10. Model information for PLS models developed for Leuciscus idus pLC50.

Model Training set ka R2Yb Q2Yc RMSEE RMSEP Outliers
(test set)

RMSEPd

PLS1 Systematic 3 0.74 0.47 0.56 0.62 2 0.58

PLS10 Random 3 0.77 0.43 0.54 -e 5 0.51

a Number of PLS components
b Relative explained variance of the response in the training set
c Relative explained variance of the response determined by cross-validation. Seven cross-validation
segments were used
d RMSEP of the test set after removal of the detected outliers
e Not calculated because some of the outlying substances have very poor predictions.

This data set was the most diverse regarding the chemical structure of the substances
and better model performance would probably be obtained if substances were classified
into groups with similar behaviour and properties before modelling. This has not been
done in the present work, however, but is an interesting topic for continued work.

6 Discussion
In order to discuss the quality of models, one must choose a method to measure model
performance. Frequently, R2 and Q2 values are reported in QSAR studies as measures of
model performance. However, although these certainly tell us something about the
significance of the fit, they do not help us in judging whether or not the model is
accurate enough for application purposes, since they say nothing about the expected
uncertainty of a prediction when the model is used. Therefore, we have chosen to use
RMSEP as the primary model quality criterion in this study. From an application point-
of-view this is the relevant performance measure. RMSEP values can be compared for
models based on different training data, which is not the case for R2 and Q2.

Table 11shows a summary of the models developed for the toxic properties considered
in this work based on all descriptors. For the two properties with a large test set
(Microtox pEC50 and Daphnia pEC50) the RMSEPs for systematic and random selection
was practically equal (although the number of outliers was different as discussed
above).
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For the two properties with small test sets (alga pEC50 and Lepomis macrochirus pLC50)
the difference between the two RMSEP estimates was larger. A possible explanation for
this fact is that expectation values for prediction errors are known to be difficult to
estimate (this is the reason we have used as large test sets as considered possible in all
cases). The lower number of substances used in the estimation, as shown in the second
column of the table, means that RMSEP estimation was less accurate than in the other
two cases.

The last column of the table shows pooled RMSEP values for the five properties. These
are believed to be the best available RMSEP estimates for a model based on all
substances available in each case, i.e. the model that will be used for prediction of
toxicity of new substances. Thus, these were the prediction error estimates used in the
discussion of model performance below.

Table 11. Prediction errors for models based on all descriptors with systematic and random selection
of the training set.

Organism and property No. of test
substances

RMSEP
systematic

RMSEP
random

RMSEP
pooled

Microtox pEC50 41 0.54 0.53 0.54

Green alga pEC50 21 0.39 0.50 0.45

Daphnia magna pEC50 47 0.36 0.34 0.35

Lepomis macrochirus pLC50 22 0.40 0.34 0.37

Leuciscus idus pLC50 47 0.58 0.51 0.55

The EPA QSAR evaluation study defined successful prediction of properties as being
within a factor 10 of the experimental value [EPA 1994]. Because RMSEP values can
be treated approximately as standard deviations of model predictions, we can transfer
this criterion to the models in this work. The Microtox, alga toxicity and Leuciscus idus
models have an RMSEP (in log units) of approximately 0.5, which means that ± one
order of magnitude corresponded to ± 2 RMSEP values, i.e. two standard deviations,
which is approximately a 95 % confidence interval. For the Daphnia magna and
Lepomis macrochirus toxicity models, the RMSEP was approximately 0.35 log units,
which means that one order of magnitude corresponded to 3 standard deviations, which
corresponded roughly to a 99.5 % confidence interval. Thus, of the substances not
indicated as outliers by the outlier detection diagnostics, roughly 99.5 % of the Daphnia
magna and Lepomis macrochirus toxicity predictions and roughly 95 % of the
Microtox, alga and Leuciscus idus toxicity predictions will be correct according to the
EPA criterion.

This can be compared to the results obtained in a performance study of the ECOSAR
software provided by the US Environmental Protection Agency for estimation of
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aquatic toxicity of different types of chemicals. The models are based solely on the
descriptor log KOW and are of highly questionable quality [Kaiser et al. 1999,
http://www.disat.unimib.it/chm/QSARnews3.htm 2003-02-19]. In some cases they are
based on only 2 or 3 substances. The performance study report [EPA 1994] discussed
some of the EPA QSAR models routinely used to estimate environmental effects of new
chemicals. For physicochemical properties like log KOW, water solubility and vapour
pressure, the models were of limited accuracy with between 50% and 70% of the
predictions considered correct (within one order of magnitude from the experimental
value). For aquatic toxicity, the hit rates were higher with 71% and 82% correct
predictions for Daphnia and fish toxicity, respectively. It should be noted that the set of
about 140 chemicals used in the study were diverse, containing organics, metallo-
organics and polymers.

However, we stress that in our opinion the most alarming issue is not the quite low hit
rates but the lack of diagnostic information that could indicate that a prediction is
unreliable. Using these models there is no way of telling whether or not the prediction is
among the correct 50-70 %, except from experience and expert knowledge of QSAR
modelling, which is unsatisfactory. The models developed in this work gives a much
higher rate of correct predictions for a limited set of substances but are not applicable
for the diverse set of chemicals used in the test of the EPA models. However, as we
have shown, if a substance was not correctly predicted by the PLS models this was
detected by the outlier detection method. If so, the user knows that the prediction is not
correct, and that he has to use other tools to predict or to measure toxicity for this
particular substance.

To finalise this discussion, it should be mentioned that the prediction being within one
order of magnitude from the literature value is not equal to the prediction being within
one order of magnitude from the actual value. Errors in experimental determination and
other sources of uncertainty, such as impurities, are implicitly included in the estimated
model error. The so-called apparent root mean square error of prediction
(RMSEPapparent), which is the one obtained during test set validation of models, can be
written as:

22
refapparent sRMSEPRMSEP +=

here, RMSEP is the true prediction error of the model, i.e. the estimated difference
between model predictions and the actual ("true") value of the property predicted and
sref is the error in the reference values expressed as a standard deviation. Thus, the
RMSEPapparent is expected to be higher than the true RMSEP. Therefore, the number of
correct model predictions, measured in comparison with the true toxicity value is higher
than indicated above.
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7 Conclusions
QSAR prognosis models for five different toxicity end-points have been developed:
Microtox, green alga, Daphnia magna, Lepomis macrochirus and Leuciscus idus
toxicity. The resulting models have good predictive ability and are well suited for
screening of new and existing chemicals and priority setting for further testing. They are
valid for organic molecules that are 'similar' to the substances used for model training
(Appendix B).

It may be difficult for a model user to objectively assess if a substance is 'similar' to
training substances. It has been shown that outlier diagnostics based on the distance to
the PLS model space can be used to reliably detect prediction outliers. This reduces
dramatically the risk of false negative predictions, which is the most alarming risk when
using QSAR models in prediction of environmental effects.

The difference in the number of outliers between models with a randomly and
systematically selected training set illustrates well the need of representative training
data, since models of the type used do in general not extrapolate well. Prediction
outliers can never be completely avoided for a QSAR model that is used in reality.
Thus, it is of great importance to be able to detect when the model is not valid and
predictions should not be trusted.
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Appendix A: Descriptors calculated by the
Dragon software
The descriptors calculated by the Dragon software can be divided into 18 logical blocks:

1. constitutional descriptors (47)
2. topological descriptors (266)
3. molecular walk counts (21)
4. BCUT descriptors (64)
5. Galvez topological charge indices (21)
6. 2D autocorrelations (96)
7. charge descriptors (14)
8. aromaticity indices (4)
9. Randic molecular profiles (41)
10. geometrical descriptors (70)
11. RDF descriptors (150)
12. 3D-MoRSE descriptors (160)
13. WHIM descriptors (99)
14. GETAWAY descriptors (197)
15. functional groups (121)
16. atom-centred fragments (120)
17. empirical descriptors (3)
18. properties (3)

The full list of all 1481 descriptors is too extensive to include in this report but can be
exported from the Dragon software or found on the web site of the Milano Chemo-
metrics and QSAR Research Group (http://www.disat.unimib.it/chm/Varfile.pdf).
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Appendix B: Substances and reference data used
The short name given in the table corresponds to the labels in the plots that show
modelling results.
Name Short name Microtox

pEC-50
Daphnia
pEC-50

Leuciscus
pLC50

Lepomis
pLC50

Alga
pEC-50

Acenaphthene Acenaften 1.96

Acetaldehyde Acetaldehyd -0.50

Acetoacetate Acetoacetic ester -0.60

Acetone aceton -2.23 -2.17 -2.29

Acetone cyanohydrin 7 Acetoncyanhydrin 1.70

Acetonitrile Acetonitril -2.15

Acridine 8 acridine 2.30

Acrolein Acrolein 1.35

Acrylic acid AcryCOOH -0.21 -0.64

Acrylic acid, butylester AcrylBuester 0.75

Acrylic acid, 2-
ethylhexylester

AcrylEt2Hxester 0.90

Acrylonitrile Acrylnitril 0.28

Allylamine Allylamin -0.12

Allyl-N-thiourea Allyltiourea -1.50

Aminotriazole Am-TA -1.31 0.32

Amylacetate Amylacetat 0.00

Amylethylketone Amyletylketon 0.24

2-Methyl-2-butanol9 Amyl-t-OH -1.44

Aniline aniline 0.13 0.31 0.18 0.69

Anisole anisol -0.05

Atrazine atrazine 0.82

Benzylalcohol Balk 0.23 0.29

Benzene bensen 0.00 0.45 0.37

Benzoic acid Bensoicacid -0.58

Benzaldehyde Benzaldehyd 0.23

                                                
7 (2-Hydroxyisobutyronitrile)
8 (2,3-benzoquinoline)
9 (tert. Amylalcohol)
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Name Short name Microtox
pEC-50

Daphnia
pEC-50

Leuciscus
pLC50

Lepomis
pLC50

Alga
pEC-50

Benzonitrile Benzonitril 0.03

Benzotrichloride Benzotriklorid -1.33

Benzylchloride BKL 1.75 1.63

Bromo-4-phenyl-
phenylether

Br4Pfenyleter 1.63

Butylamine BuAm1 -2.40 -0.51

Butylbenzylphthalate BuBeftalat 0.86

Butylglycol Buglycol -1.13

Butylether Bu-n-eter 0.26

n-Butylacetate BuOAc 0.69 -0.08

Butanol-1 BuOH1 -1.61 -1.40 -1.13

Butanol-2 BuOH2 -1.60

t-Butylacetate Bu-t-acetat -0.49

Butanone Butanon -1.67 -1.81

t-Butylbenzene Bu-t-bensen 0.31

Butyldiglycol Butyldiglycol -1.05

n-Butyraldehyde Butyraldehyd -0.20

Butyric acid Butyric acid -0.74

Carbaryl Carbaryl 1.00

Chlorobenzene CB 0.99

Carbon tetrachloride CCl4 0.66 0.20 0.21 0.76

Bromoform CHBr3 0.94

Chloroform CHCl3 -0.75 0.25 -0.13

Chlordane Chlordan 3.41

Citric acid Citronsyra -0.60

1-Chloronaphthalene Cl1naftalen 1.85

2-Chloroethyl-vinyl ether Cl2vinyleter -0.52

Bis-2-chloroethylether Cletyl2eter -0.62

2-Chlorophenol CP2 0.51 0.86 1.29 0.26

3-Chlorophenol CP3 0.99 0.91 0.65

4-Chlorophenol CP4 1.15 1.20 1.53 0.53

2-chlorotoluene CT2 1.32 0.21

Cycloheptane CyHeptan -0.32

Cycloheptene Cyhepten -0.07 0.23
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pEC-50

Daphnia
pEC-50

Leuciscus
pLC50

Lepomis
pLC50

Alga
pEC-50

Cyclohexane CyHexan 0.18

Cyclohexanone CyHexanon -0.74

Cyclohexene CyHexen 0.32

Cyclohexylacetate CyHexylOAc 0.23

Cyclohexanamine CyHxAm 0.31 -0.29 0.70

Cyclopentanol CyPentanOH -1.24

Cyclopentanone Cypentanon -1.58

Di-n-butylphtalate DBuftalat 2.37

2,4-Dichloro-6-
methylphenol

DC24M6P 2.04

1,2-Dichlorobenzene DCB12 1.67 0.70 1.42 1.82

1,3-Dichlorobenzene DCB13 1.57 1.41 1.47

1,4-Dichlorobenzene DCB14 1.48 1.53 1.96

3,4-Dichlorocatechol DCCat34 2.85

4,5-Dichlorocatechol DCCat45 2.60

4,5-Dichloroguaiacol DCGu45 1.80

2,3-Dichlorophenol DCP23 1.53 1.50 1.51

2,4-Dichlorophenol DCP24 2.14 1.78 1.51 1.91 1.07

2,5-Dichlorophenol DCP25 1.23 1.52

2,6-Dichlorophenol DCP26 1.08 1.24 0.75

3,4-Dichlorophenol DCP34 1.99 1.77 1.71

3,5-Dichlorophenol DCP35 1.65 1.89 1.85

1-Decanol DeOH1 2.38 1.16 2.42

2-Decanol DeOH2 2.13

Diethylphthalate DEP 0.29 0.62 0.31

1,2-Diethylbenzene Detbensen 0.62

Diacetone alcohol Diacetonalkoh -1.89

Diallylphthalate Diallylftalat 2.79

Dibutylamine diBuAm 0.83

Diethylamine DiEtAm -0.49 1.48 0.56

Diethanolamine Dietanolamin -1.25

Diethylnitrosoamine diEt-NA 0.96

Dietyloxalate Dietyloxalat -0.32

Dimethylamine diMeAm 0.86
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Daphnia
pEC-50

Leuciscus
pLC50

Lepomis
pLC50

Alga
pEC-50

Dimethylnitrosamine diMe-NA 1.27

2,4-Dinitro-5-sec-
butylphenol

Dinoseb 2.08

Dioxane Dioxan -0.88 -1.98

Diphenylether DiPheeter 1.75

Diphenylmethane Diphemetan 1.35

Diisopropylamine diPrAm 0.70

Disulfoton Disulfoton 4.14

1,2-Dichloroethane DKE12 -1.05 -0.74 -0.64

1,1-Dichloroethylene DKeten11 0.12

1,2-Dichloroethylene DKeten12 -0.25 -0.16

Dichloromethane DKM -1.53 -1.39 -0.79 -0.41

1,2-Dichloropropane DKP12 0.11 -0.39

1,1-Dichloropropane DKPropan11 0.06

1,3-Dichloropropane DKPropen13 1.26

2,4-Dimethylaniline DMA24 0.87 -0.21

Dimethylphthalate DMftalat 0.59

2,3-Dimethylphenol DMP23 0.96

2,4-Dimethylphenol DMP24 1.02 1.20

2,5-Dimethylphenol DMP25 1.03

2,6-Dimethylphenol DMP26 0.93

3,4-Dimethylphenol DMP34 0.81

3,5-Dimethylphenol DMP35 0.74

2,4-Dinitro-6-
methylphenol

DN24M6P 2.94

1,3-Dinitrobenzene DNB13 0.72 1.23

3,5-Dinitrobenzoic acid DNB35 -0.28

2,4-Dinitrophenol DNP24 1.41 2.47

2,5-Dinitrophenol DNP25 1.34

2,3-Dinitrotoluene DNT23 2.74

2,4-Dinitrotoluene DNT24 0.45

Dodecylbenzene Dodebensen -0.51

Dodecanol DodeOH1 3.79

1,2-Diphenylhydrazine DP12hydrazin 2.83

2-Ethyl-1-hexanol E2HxOH1 0.70
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EDTA EDTA -0.74

Endrin Endrin 3.58

Ethanolamine Etanolamin -0.93

Ethylbenzene EtB 1.14 0.38 -0.15

Ethylenediamine Etylendiamin -2.47 -0.83

Diethylether eter -1.88 -1.16 -1.58

Ethylacetate EtOAc -0.58

Ethanol EtOH -2.91 -2.34

2-Ethylhexylamine Etyl2hexylami 0.91

Ethylbutyrate Etylbutyrat 0.17

Ethylglycolacetate Etylglykolacet -0.03

Ethylpropionate Etylpropionat -0.09

Acetic acid, bromo-, 2-
butene-1,4-diyl ester
(Fennosan F50)

FeF50 3.99

Fenitrothione Fenitrotion 4.49

Floroglucinol FloGlu 0.00

Fluoranthene Fluoranten 1.70

Furaltadone10 Furaltad 1.44

Furfurylalcohol Furfurylalkohol -1.14

1-Heptene Hepten-n-1 -0.31

Hexachlorobutadiene Hexaklorbutadien -0.26

Hexachloroethane HKEtan 2.38

Acetic acid HOAc -0.40 -0.83

1-Heptanol HpOH1 0.92 0.15 0.45

1-Hexanol HxOH1 0.47 -0.29 -0.11

2-Hexanol HxOH2 -0.45

3-Hexanol HxOH3 -0.54

Hydroquinone Hydrokinon 2.87

Hydroquinone
monomethylether

HydrokinonOMe 0.58

Diethanolamine Iminodieta -0.44

Isoamylalcohol IsAmOH -0.60

                                                
10 (5-morpholinomethyl-3-(5-nitrofurfurylideneamino)-2-oxazolidinone)
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Alga
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Isobutylacetate IsobutylOAc -0.03

Isobutyronitrile Isobutyronitril -0.55

Iso-octanol IsoocOH 0.73

Isophorone Isophorone -0.20

Isopropylbenzene Isoprobensen 0.41

Isopropylacetate IsoproOAc -0.55

Isopropylacetone Isopropylacet -0.87

4-Chloro-6-methylphenol K4M6P 1.79

2-Methylphenol Kresol2 0.78 0.76

3-Methylphenol Kresol3 1.16 0.75

4-Methylphenol Kresol4 0.94

Dipentene (dl-Limonene) Limonen-dl 0.60

Lindane Lindan 1.42 2.46 3.02

Malathione Malation 5.52

4-Chloroaniline MCA4 1.59

Chlorobenzene MCB 0.97 3.75 0.85 0.95

2-Methylcyclohexanone Me2Cyhexano -0.62

2-Methylfuran Me2Furan -0.46

3-Methyl-4-chlorophenol Me3Cl4P 1.50

5-Methyl-2-hexanone Me5Hexanon2 -0.16

Methylacrylate MeAcrylat 1.06

Methylmethacrylate MeMetakrylat -0.54

Methanol MeOH -3.26 -2.63

2-Methyl-1-propanol MePOH21 -1.22 -1.31

Methylpropionate MePropionat -0.34

4-Nitroaniline MNA4 1.15 0.60

2-Nitrophenol MNP2 0.50

3-Nitrophenol MNP3 0.80

4-Nitrophenol MNP4 1.09 1.22

2-Nitrotoluene MNT2 1.87 0.93 0.67

4-Nitrotoluene MNT4 1.10 1.18

Monofluoroacetic acid MonofluorAc -0.55

Monolinuron Monolinuron 0.46

Morpholine Morfolin -0.06 -0.51 0.49
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Leuciscus
pLC50

Lepomis
pLC50

Alga
pEC-50

Nitrobenzene NB 0.62 0.31 0.46

Nitrofurazone NO2Fuzo 2.14

Nonanol NoOH1 2.01

Nitrilotriacetic acid NTA -0.72 -0.40

1-Octanol OcOH1 1.58 0.81 0.81

Octafonium chloride11 octafon 2.96

Oxalic acid Oxalsyra -0.56

Pentachlorobenzene PClbensen 3.00

Pentachlorophenol PCP 2.51 2.55 2.80

Pentadecanol PedeOH1 0.25

2,4-Pentanedione Pedion24 -0.27 -0.06

1-Pentanol PeOH1 -0.66 -0.68 -0.74

3-Pentanol PeOH3 -1.23 -0.60

Phenol Phenol 0.44 0.40 0.58 -0.20

Phenylacetate PheOAc 1.02

Pentachloroethane PKEtan 1.45

p,p'-DDT ppDDT 1.39 3.25

Propylacetate ProOAc -0.28

1-Propanol ProOH1 -2.21 -1.87 -1.88

2-Propanol ProOH2 -2.17

Propargylalcohol12 PropynOH 1.47

Pyridine Pyridin -0.47 -0.48

Pyrogallol PyroGa 0.74

Resorcinol Resorc 0.01

Salicylaldehyde Salicylaldehyd 1.47

Dodecylsulfat SDS 2.28 1.12

Styrene Styren 0.79

Tartaric acid TartCOOH 0.05

t-Butylamine tBuAm 0.66

1,2,3-Trichlorobenzene TCB123 2.30

1,2,4-Trichlorobenzene TCB124 1.96 1.73 2.11

                                                
11 (Octaphen) (N,N-diethyl-N-(2-(4-(1,1,3,3-tetramethylbutyl)phenoxy)ethyl)benzene methanamine chloride)
12 (2-Propyn-1-ol)
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pLC50

Lepomis
pLC50

Alga
pEC-50

3,4,5-Tricholorcatechol TCCat345 2.92

3,4,6-Tricholorcatechol TCCat346 3.04

3,4,5-Trichloro-2,6-
dimethoxyphenol

TCDMP26 2.48

3,4,5-Trichloroguaiacol TCGu345 2.48

4,5,6-Trichloroguaiacol TCGu456 2.70

1,2,3-Trichlorobenzene TCP123 1.86

1,2,4-Trichlorobenzene TCP124 1.69

1,3,5-Trichlorobenzene TCP135 1.11

2,3,4-Trichlorophenol TCP234 2.09 1.95 1.99

2,3,5-Trichlorophenol TCP235 2.16 1.94

2,3,6-Trichlorophenol TCP236 1.17 1.43

2,4,5-Trichlorophenol TCP245 2.21 1.98 2.64

2,4,6-Trichlorophenol TCP246 1.38 1.56 2.79 1.75

3,4,5-Trichlorophenol TCP345 2.71 2.35

Tebuthiuron13 Tebuthon 3.27

1,2,3,4-
Tetrachlorobenzene

TeCB1234 2.06

1,2,3,5-
Tetrachlorobenzene

TeCB1235 1.79 1.53

1,2,4,5-
Tetrachlorobenzene

TeCB1245 1.52 2.13

Tetrachlorocatechol TeCCat 3.49

Tetrachloroguaiacol TeCGu 2.82

2,3,4,5-Tetrachlorophenol TeCP2345 3.05 2.12

2,3,4,6-Tetrachlorophenol TeCP2346 2.20 3.22 2.25

2,3,5,6-Tetrachlorophenol TeCP2356 1.96 2.01 3.13

Tetradecanol TedeOH1 2.58

Tetrahydrofuran TeHyFuran -1.59

Tetrachloroethene TeKE 0.93 1.71 1.11

1,1,1,2-Tetrachloroethane TeKEtan1112 0.92

1,1,2,2- Tetrachloroethane TeKEtan1122 0.90

1,2,4,5-
Tetramethylbenzene

TeMebensen1245 0.65

                                                
13 (N-(5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl)-N,N'-dimethylurea)
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Lepomis
pLC50
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Thiram Thiram 3.11

Trichloroethene TKE -0.16 0.24 -0.01 0.47

1,1,1-Trichloroethane TKEtan111 0.27

1,1,2-Trichloroethane TKEtan112 0.52

2,3,5-Trimethylphenol TMP235 0.71

2,3,6-Trimethylphenol TMP236 0.85

2,4,6-Trimethylphenol TMP246 0.68

2,4,6-Trinitrophenol TnP246 0.37 0.13

Toluene Toluene 0.71 0.57 0.12 0.85

2-Toluidine Toluidin2 -0.04

Tridecanoic acid TrideCOOH 1.25

Tridecanol TrideOH1 3.57

2,4,5- Trichloro-
phenoxyacetic acid

Triklor-2,4,5
-fenoxisyra

-0.31

Tri-n-butylphosphate Tri-n-BuP 1.54

Undecanol UnOH1 3.14

Vinyl acetate VinylOAc 0.22 0.52

1,2-Xylene Xylen12 1.06
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