Environmental Implications of Dynamic Policies on Food Consumption and Waste Handling in the European Union

Michael Martin, Lina Danielsson and Tomas Ekvall IVL-Swedish Environmental Research Institute

Background

- EU-FP7 Project DYNAMIX Decoupling growth from resource use and its environmental impacts
 - Food, Metals, Waste, Recycling, Vehicles....
 - Quantitative and Qualitative Studies on Env., Economy, Social, etc. implications of dynamic policies
- Effect of Policies on Env. Performance (FOOD)
 - Targeted information campaigns on changing diets and on food waste.
 - Development of food redistribution programmes/food donation to reduce food waste.
 - Increased value-added tax (VAT) on meat.

Outlined in Ekvall et al. (2015)

Ekvall, T, Elander, M., Umpfenbach, K., Hirschnitz-Garbers, M., Hudson, C., Wunder, S., Nesbit, M. et al. 2015. Development of DYNAMIX policy mixes. Deliverable D4.2, DYNAMIX.

Method

- FAO Food Balance Sheets (2010)- Only food for consumption (excluding for seed and other wastes)
- Raw materials (e.g. meat, cereals, fruits, fish....(many products in each category))
- Representative Food Products (RFPs)
 - At least 80% of category

- LCI data collected for each product category
- Scenarios for Reference Year (2010), 2030 and 2050
- Modelled in GABI

Assumptions/Limitations

- Does not include nutritional aspects
- Crude assumptions and not consequential based (no effect on other life cycles outside food)
- LCI data most salient for GHG emissions. Only GHG emissions and resource consumption reviewed (Blue Water Consumption (Water Footprint Network) and Land (primarily from EcoInvent))
- 100% Efficiency for years 2030 and 2050
- Consumption Scenarios (Cradle-to-Gate)
- Waste Scenarios (Cradle-to-Grave) inc. System Expansion for avoided conventional products

Consumption and Waste Scenarios...

Consumption Scenarios

Scenario CO-Food Consumption 2010

Constant consumption patterns with increased population

Scenario C1-Reduced Protein Scenario

- Animal Based Protein Consumption (Milk, Eggs, Meat) was decreased by from current
 51% of our protein intake in 2010 to 35% and 25% in 2030 and 2050 respectively
- Increases in Vegetable based protein in 2030 and 2050

Scenario C2-Limits to Protein Consumption

- Proportion of animal based protein is shifted to model VAT changes
- Limit bovine and pork consumption and increase poultry consumption

Protein for Scenarios 1 and 2

Scenario C1

		2010	2030	2050
Total Protein Animal and Fish	g protein/capita/day	61.3	29.6	14.7
Total Protein Vegetable	g protein/capita/day	43.5	54.9	44.2
Total	g protein/capita/day	104.8	84.5	58.9
Total Protein Animal, Milk, Eggs (no fish)	g protein/capita/day	53.0	25.6	12.7
% from Animal, Milk & Eggs	%	51%	35%	25%

Scenario C2

	2010		2030		2050	
	g protein/ capita/day	%	g protein/ capita/day	%	g protein/ capita/day	%
Bovine	6.2	24%	2.6	10%	1.3	5%
Pork	11.2	43%	10.4	40%	5.2	20%
Poultry	8.6	33%	13.0	50%	19.5	75%
Total from Bovine, Pork, Poultry (Excluding others)	26.0	100%	26.0	100%	26.0	100%

Waste Scenarios

- Scenario W1- Reductions in waste (total and avoidable) at the retail and consumer sectors; including reductions of 60% and 85% in 2030 and 2050, respectively
- Scenario W2- Same as W1, but will also reduce the food input due to reduced waste
- Scenario W3- Food donations (20% of otherwise wasted food) from the retail sector may have on the environmental impacts.

Waste Management Paths for Food Waste	2010
Incineration	7%
Incineration w/ Energy Recovery	24%
Anaerobic Digestion	10%
Composting	9%
Landfill	50%

Results- (GHG Emissions) All Scenarios

M Tonnes CO₂-eq/year

All scenarios lead to GHG emission reductions compared to CO...but lets review these to shed more light

ivl

Results-*Consumption Scenarios*

120% 100% 80% 60% 40% 20% 100%

C1

0%

C0

Water Consumption

 Reducing Animal Protein offers improved Environmental Performance

C2

 Shifting animal protein to poultry, does not show as large of environmental impact reductions

Land Occupation

Results-Waste Scenarios

GHG Emissions

Land Occupation

Water Consumption

- Reducing Waste and Food Production Leads to largest reductions
- Donations, although good, have little impact on reducing impacts from food (slightly higher thanW1 due to less replaced conventional products)

Does this Illustrate a Decoupling (GHG)?

	2010	2030	2050
Per Capita Emissions (Tonnes CO ₂ -eq per capita)	9.4	5.6	2.0
Population	506 014 000	518 499 060	525 527 890

% of GHG Emissions compared to total/targets for 2010/2030/2050

- Reducing Animal Protein offers improved Env. Performance
- Shifting animal protein to poultry, does not show as large of env. Impact reductions
- Previous slides show potential to reduce water and land use

Land

 It was estimated that the European Union had roughly 164 million hectares of cultivated land and 76 million hectares of permanent pasture land (Fischer et al. 2010) as a reference for 2010

Scenario	2010	2030	2050
C0	130%	133%	135%
C1	130%	117%	90%
C2	130%	127%	125%
W1	130%	133%	135%
W2	130%	122%	121%
W3	130%	133%	135%

- Decreases seen in e.g. C1 and W2 (no significant changes in other scenarios)
- >100% due to imports

Water Consumption

- European Environmental Agency Estimates that Total Freshwater Resource (which is renewed) amounts to 2 270 km3/year
- Roughly 13% of this is extracted for various uses

Scenario	2010	2030	2050
C0	4.3%	4.5%	4.5%
C1	4.3%	4.3%	3.5%
C2	4.3%	4.5%	4.6%
W1	4.3%	4.4%	4.4%
W2	4.3%	3.9%	3.8%
W3	4.3%	4.4%	4.4%

No large increases, but no significant decreases

Conclusions

- Individual Policy mixes may lead to large environmental impact reductions but not enough to decouple env. Impacts and resource consumption
- May be difficult to meet climate goals (2kg CO2eq/person/year) even with outlined policies
- Important to couple policy mixes to improve the food production, consumption and waste handling systems
- Portray other resource consumption indicators (nutrient use, land use change, etc.)
- Reduced impacts from agricultural stage of importance for policies (e.g. reduced fossil fertilizers, pesticides, etc.)
- Importance of consumers to reduce food consumption and waste is paramount

Future Work/Recommendations

- Couple Policy Mixes to see implications of reduced consumption /waste/waste handling policies in combination
- Include Nutritional Aspects
- Revise the waste handling scenarios (e.g. increased biogas, reduced landfilling)
- Improve LCI databases for food production (e.g. other impacts than GHG emissions)

