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Summary 

Hormone regulated processes govern the larval development and reproduction in aquatic 
vertebrates. The involvement of pollutants in these processes needs to be examined in the 
evaluation of consequences of their release into the aquatic environment. Prognosis models may be 
used as a pre-screening step to predict such properties. This work describes the development of 
models to predict the properties involved in estrogenic hormone activity, i.e. induction (in absolute 
and relative figures) and binding affinity to the human estrogen receptor α. Models were developed 
using molecular hologram descriptors, i.e. derived only from the chemical structure of substances. 
Statistical molecular design (SMD) was used to select substances for experimental testing of 
receptor induction. Substances were then divided in a set for model construction and a validation 
set. Models were calculated for a large number of systematically varied hologram configurations to 
find those with the best data based on the predictive ability (Q2-value). The models with the best 
predictive ability were those based on holograms that considered chirality in the chemical structure. 
No other systematic effect of hologram length and fragment length was observed. The best models 
for each biological response were then further refined by a pruning procedure that resulted in 
exclusion of descriptors that did not contribute positively to the model. The three estrogenic 
responses were predicted within a factor 10 (root mean square error of prediction 0.7 – 1.0), which 
should be sufficient for the pre-screening purpose. A broad applicability characterises the three 
models, only the structural formula of a new substance is needed to be able to perform the 
prediction. 

Sammanfattning 

Hormonstyrda processer styr individers utveckling hos vattenlevande organismer och deras 
fortplantning. Påverkan av främmande ämnen på dessa processer är egenskaper som behöver 
kartläggas inför bedömningen av eventuella utsläpp till vattenmiljön och överhuvudtaget i samband 
med utvärdering av miljöegenskaper. I ett inledande skede kan modeller att beräkna sådana 
egenskaper utnyttjas. I detta arbete har multivariata modeller utvecklats för tre egenskaper som alla 
är knutna till östrogena effekter, induktion (såväl absoluta som relativa värden) och 
bindningsaffinitet med östrogenreceptor α hos människa. Modellerna bygger enbart på molekylära 
hologramdeskriptorer härledda från ämnens kemiska struktur. Modeller beräknades för ett stort 
antal olika hologramkonfigurationer för var och en av de tre biologiska egenskaperna för att söka 
de konfigurationer som gav bästa resultat. Urvalet baserades på modellernas prediktionsförmåga 
(Q2-värdet). Högsta värden erhöll modeller som tog hänsyn till kiralitet i ämnenas molekyler. 
Hologrammens eller fragmentens längd påverkade inte prediktionsförmågan. Med dessa modeller är 
det möjligt att beräkna dessa tre östrogena effekter med en genomsnittlig träffsäkerhet inom en 
faktor 10. Modellen för bindningsaffinitet gav något bättre prognoser än de andra två. Gemensamt 
för de tre modellerna är deras breda tillämpbarhet. Endast ett ämnes strukturformel behövs för att 
prognosticera dessa effekter. 
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1 Introduction - QSARs for endocrine 
disruption 

During the last two decades there has been an increasing concern about substances interfering with 
the normal endocrine functions in both animals and humans. Most focus has been directed to the 
effects of environmental pollutants on sex steroid hormone regulated processes. These substances 
affect the reproductive function and development in vertebrates. The effects of environmental 
disrupters on endocrine functions are a prioritised area by the European Union.  

Quantitative structure-activity relationships (QSAR) are modelling tools often used to prescreen 
properties to facilitate decision processes prior to experimental studies. Several attempts have been 
reported about the use of QSAR modelling of endocrine disrupters. Good and reliable QSAR 
models for prognosis of other chemical or biological properties, such as acute aquatic toxicity, have 
been developed. An US Environmental Pollution Agency (EPA) workshop [EPA 2000] raised 
some concerns related to QSAR for endocrine disrupter priority-setting. Much of the modelling 
work was based on in vitro studies, and since reliable receptor binding data is critical, it was 
questioned whether EPA had enough data to base QSARs on. EPA responded that the US Food 
and Drug Administration (FDA) had completed data collection for 220 compounds. Their goal was 
to expand the data set to include 500 compounds. EPA anticipated that this baseline data will be 
robust. In addition, these QSARs and high-throughput pre-screening (HTPS) methods focused on 
ligand receptor binding only, and did not capture other types of agonist and antagonistic activities. 

In a preliminary study we attempted to model estrogen receptor binding affinity (RBA) from 
traditional molecular descriptors calculated by the Dragon software. The results showed that the 
models could distinguish between groups with low and high RBA. Within the groups, the predictive 
ability was poor, despite several attempts with variable selection, clustering of substances and non-
linear extensions of partial least squares (PLS). We concluded that this set of descriptors, i.e. 
descriptors that can be calculated by the Dragon software, were not appropriate for quantitative 
prediction models for the human estrogen receptor (ER-α) RBA. The results agreed with 
previously published comparative studies of ER-α RBA modelling. Tong et al. [1998] showed that 
traditional QSAR descriptors are outperformed by holographic QSAR (HQSAR) and Comparative 
Molecular Field Analysis (CoMFA). Also Shi et al. [2001] showed the potential of HQSAR and 
CoMFA for endocrine disrupter modelling. However, it is worth noting that PLS was usually the 
regression method used for both methods. This means that the outlier detection features of PLS 
can potentially be applied to HQSAR and CoMFA models for endocrine disruption, which 
significantly would increase the reliability of the models. Similar arguments can be applied to 
modelling of other measures of endocrine disruption, e.g. agonistic and antagonistic activities. 

The FDA developed a four-phase approach for priority setting of endocrine disruptors using 
QSAR [Tong et al. 2002]. The approach was quite complex and utilised a large number of models in 
each phase to estimate if substances have significant binding affinity for the estrogen receptor. The 
later phases in the approach were based on CoMFA models, while the earlier ones were simpler 
rule-based methods. It was claimed that testing of about 90 % of substances may be eliminated by 
the approach and that the risk of false negatives was small. 

Gao et al. [1999a] investigated QSAR modelling of groups of structurally similar compounds to 
calculate relative binding affinity for different estrogen receptors with strong focus on 
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interpretation of the models in physico-chemical terms to understand ligand-receptor interactions. 
The models were based on a few traditional molecular descriptors, such as the Taft parameter for 
substituents, molecular weight and molecular volume, and in general provided good fits for the 
small number of substances analysed in each case. The authors claimed that the interpretation was 
facilitated by the low number of descriptors and their physico-chemical characters and meant that 
more complex models, e.g. CoMFA models, could not be interpreted in the same terms, partly due 
to the use of principal components. 

Suzuki et al. [2001] constructed models for predictions of ER-α binding affinity using 60 substances 
and one-, two-, and three-dimensional descriptors, the latter including Weighted holistic invariant 
molecular (WHIM) descriptors and Theoretical linear solvation energy relationship (TLSER). 
Models based on 3D descriptors gave expectedly better predictions (cross validated predictive 
ability, Q2cv: 0.67-0.96) as compared to those based only on 1D and 2 D descriptors (Q2cv: 0.42-
0.75). The values refer to arranging substances in subclusters, as clustering resulted in better 
predictions than models based on all 70 substances.  

Models using PCA with descriptors and Bayensian classification of scores was used to classify 
substances as active or inactive [Gao et al. 1999b]. This method used only independent descriptors. 
3D descriptors could not be used because the conformation of the active component was not 
always known. Only 13 descriptors were used involving connectivity indices and shape parameters, 
including indicator values showing certain structural elements. The models performed well, 85-90 
% of the substances were classified correctly, fairly independent of where the limit between inactive 
and active substances was set. 

Conventional QSARs based on c. 200 descriptors, half of which were quantum chemical 
descriptors, were compared to models using HQSAR and CoMFA [Tong et al. 2002]. These latter 
methods performed better than conventional models and HQSAR was easier to use, because only 
2D descriptors were employed, i.e. conformation had not to be considered. QSAR models for ER-
α RBA were constructed based on a diverse set of 130 substances using CoMFA and HQSAR [Shi 
et al. 2001]. Upon comparison of the two different methods, CoMFA was superior (Q2 (loo-
cv)=0.65-0.71). Schmieder et al. [2000] used CoRePa with 29 alkylphenolic substances for modelling 
3D structures of substances interfering in estrogen gene activation. They conclude that molecular 
conformation was especially important in flexible molecules. 

In this study we report the development of holographic QSAR models based on published data and 
own experimental tests of the agonistic estrogenic effect on the human estrogen receptor α and 
published data on the relative binding affinity to the same receptor. To be able to perform this type 
of QSAR the following components are needed:  
- Substances with known structure (and biological activity if the aim is to develop new models).  
- Software for generating molecular holograms based on the structures of the substances. 
- Software for multivariate data analysis.  
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2 Theory 

2.1  Molecular descriptors 

A QSAR model is a relation between chemical structure and a property of the chemical compound. 
The features of a chemical structure are captured by so called chemical descriptors that can be of a 
number of different types. In the following sections three different types of descriptors are 
presented that can be used for QSAR models for endocrine disruption. 

2.1.1 Holographic QSAR – HQSAR 

Holographic QSAR (HQSAR) uses molecular holograms as descriptors [Burden, Winkler 1999].  A 
molecular hologram is an array containing counts of molecular fragments. The required input data 
for the generation of the hologram is the two-dimensional chemical structure of the substance. The 
substance is then divided into smaller fragments of a predefined length. Each fragment is converted 
into a number by translating its representation to an SLN (Sybyl Line Notation) to an integer using 
a CRC (cyclic redundancy check) algorithm [Lowis, 1997]. Each of these integers corresponds to a 
bin in an integer array of fixed length L. The length of the array is normally between 50 and 500. 
Bin occupancies are incremented according to the fragments generated. Thus, all generated 
fragments are hashed into array bins in the range 1 to L, similar to a histogram. This array is called a 
molecular hologram, and the bin occupancies are the descriptor variables. An overview of the 
generation of molecular hologram is shown in Figure 1. 

 

Figure 1. Schematic overview of molecular hologram generation. From Lowis [1997]. 

The outcome of the molecular hologram generation is dependent on a set of parameters [Lowis 
1997]. These parameters are: 

• Hologram length 

Molecular 
structure 

6 atoms                   5 atoms                4 atoms 

Fragments 

CRC Algorithm 

 12                   5                   9  

Fragment counts 
(hashing algorithm) 

2 0 5 13 0 7 1 863
1     2     3     4     5     6     7     8     9    10 

Molecular 
hologram 
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• Fragment length 

• Fragment distinction 

- Atoms, enables fragments to be resolved based on elemental atom types. 

- Bonds, enables fragments to be distinguished based on bond orders. 

- Connectivity, provides a measure of atomic hybridization states within fragments. 
That is, connectivity causes HQSAR to keep track of how many connections are 
made to constituent atoms, and the bond order of those connections. 

- Hydrogens, by default HQSAR ignores the hydrogen atoms during fragment 
generation; the hydrogen parameter overrides this behaviour 

- Chirality, enables fragments to be distinguished based on atomic and bond stereo 
chemistry. 

The molecular hologram generated for the studied substances are related to the biological endpoint 
with multivariate projection methods, i.e. partial least squares (PLS) see section  2.2.2 and  2.2.3 for 
further information.  

2.1.2 CoMFA and GRID 

There exist specific QSAR descriptors that are based on a more physical model or understanding of 
the molecular interactions behind the measured biological response. Two methods that are closely 
related and based on superposition and alignment of molecular structures are Comparative 
molecular field analysis (CoMFA) and GRID [Livingstone 2000]. Both involve the use of a 
molecular probe and calculation of the interaction between the probe and the molecule that is being 
analysed. Interactions are measured at a (usually large) number of points in space defined by a grid 
placed around the molecular structure. PLS (see below) is usually used as the regression method in 
CoMFA. 

CoMFA and GRID require that molecules be aligned relative to some common reference, e.g. the 
centre of mass. Aligning molecules with a similar structure is usually not that difficult, but a more 
diverse data set poses problems for all methods requiring alignment [Buydens et al. 1999]. CoMFA 
and GRID descriptors have not been used in the present work. 

2.1.3 Common Reactivity Pattern 

The modelling methods discussed above are general empirical regression methods that can in 
principle be applied to any regression problem and that can be used for QSAR modelling when 
applied to molecular descriptors and molecular properties of substances. 

Another approach is Common Reactivity Pattern (CoRePa) [Mekenyan et al. 1997], which accounts 
for conformer flexibility in the structures. A brief description of CoRePa is as follows. A set of 
chemicals that are most (or sometimes least) active, i.e. that exceed (fall short of) a threshold for the 
biological activity in question, is selected. Then, a set of parameters that are hypothesised to be 
potentially important for the biological activity are identified. These are evaluated for a distribution 
of conformers for each compound to give a distribution of the parameter per substance. All 
distributions for a certain parameter are superimposed and common regions are identified. The 
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common regions identified (i.e. for different parameters) constitute the common reactivity pattern. 
CoRePa descriptors have not been used in the present work. 

2.2 Modelling methods 

Different modelling methods can be used to relate the structure of chemicals to environmental 
properties. Although simpler, univariate modelling have been used, the emphasis lately has been on 
multivariate regression methods, e.g. those based on latent variables, one of which, partial least 
squares (PLS), was used in this work. Some of these methods are described below. 

2.2.1 Linear regression 

The simplest QSAR models are univariate linear regression models of the form: 

01 kdescriptorkresponse +×=  

These simple models are of limited use since such relationships are usually inadequate. An 
extension of the equation is: 

∑
=

×+=
p

i

i
i descriptorkkresponse

1
0  

where p is usually chosen as p = 2 or p = 3. The extension allows non-linear relations between the 
response and the single descriptor. However, a single descriptor is usually not sufficient to capture 
the properties of a substance, although successful applications have been reported for narrow 
groups of substances, usually with log KOW as the descriptor. 

Multiple linear regression (MLR) can be used to model the dependence of several descriptors 
according to the equation: 

∑
=

×+=
p

i
ii xkkresponse

1
0  

where xi is the ith descriptor. The number of descriptors, p, can vary widely from p = 2 to relatively 
large numbers. However, if many descriptors are used that contain similar information, i.e. are co-
linear, problems with variance inflation occurs, which means that the models become very sensitive 
to small variations in the descriptors and that their predictive performance becomes poor. To solve 
this problem, different variable selection algorithms can be used to select a small set of variables 
with high information content. Another approach is to use multivariate projection methods, 
described in the next section, that handle, and even utilise, the co-linearity in the descriptor set. 

2.2.2 Multivariate projection methods 

Typical examples of multivariate projection methods are principal component analysis (PCA) and 
partial least squares (PLS). Sometimes this type of methods is denoted multivariate data analysis 
(MVA) methods, which is a rather non-descriptive name but nevertheless adopted here due to 
convention. More informative names are multivariate projection methods or latent variable 
methods. 
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The fundamental MVA method is PCA. A brief description of PCA is given here; more details are 
given in literature [Wold et al. 1987, Martens, Naes 1989, and Esbensen et al. 1996]. PCA 
decomposes a data matrix X (a table, in the current context the rows correspond to the substances 
while the columns correspond to descriptors) according to: 

ETPX T +=  

PCA can be considered a co-ordinate transformation from the original variable space to a model 
hyper-plane of much lower dimensionality that captures the variance in the data in the most 
efficient way. The scores, denoted t or T, are the co-ordinates in the new co-ordinate system and 
thus describe the objects (here: chemical substances). The loadings, denoted p or P, describe the 
relation between the latent variables (principal components) that span the model space and original 
variables. 

The matrix E in the equation above contains the residuals, i.e. the part of the data not captured by 
the model hyper-plane. Substances that do not conform to the "pattern" found among the other 
substances will not be properly described by the model and thus have large residuals. This can be 
caused by corrupted data or that the substance in question is different from the others, which may 
indicate that a QSAR model based on the rest of the compounds will not be valid. 

The substantial dimensionality reduction achieved by applying PCA to molecular descriptor data 
sets leads to enhanced interpretation abilities which facilitate classification and clustering of 
substances. This is utilised in a methodology known as statistical molecular design (SMD), cf. below. 

PCA is not a regression method and cannot be used for finding quantitative relationships between 
descriptors and responses. The most common multivariate regression method is PLS. 

2.2.3 Partial least squares 

PLS is a latent variable based regression method described in several references [Martens, Naes 
1989, Esbensen et al. 1996, Geladi, Kowalski 1986]. PLS has several benefits compared to ordinary 
multiple linear regression: 
• Co-linearity is handled in a natural way and even utilised to find a robust estimate of the data 

structure. This means that variable selection methods are of less importance than in MLR. 

• The latent variable approach means that outlier diagnostics can be obtained both for training 
and prediction substances. 

The prediction outlier diagnostics obtained has no counterpart in MLR or the non-linear regression 
methods, such as artificial neural networks (ANN) discussed below, and are the greatest advantage 
of latent variable regression methods according to us. For a new sample it is possible to calculate a 
probability that it belongs to the same population as the model was estimated from and thus that 
the model is likely to yield a valid prediction. It should be noted that, as shown below, it is quite 
possible for a model to yield good predictions although the sample is classified as not belonging to 
the model. The opposite, that the sample is classified as belonging to the model and poorly 
predicted is uncommon. This is the behaviour required for risk assessment of substances, since a 
false prediction that is not detected may lead to a substance being erroneously classified as likely to 
be non-toxic and thus that further testing of the substance is given low priority. 
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2.2.4 Model validation and model accuracy measures 

It is important to be able to measure model performance for different reasons, including ranking of 
models and estimating the reliability of predictions, when the model is used on new substances. An 
accuracy measure is essential in order to be able to trust and use a model prediction. 

The data used to estimate the model, the training set, cannot be used to reliably estimate model 
performance. Two validation methods are commonly used: 
• Cross validation. In cross validation the model is estimated a number of times. In each round, 

a part of the training substances are kept out. The toxicities of these substances are then 
predicted by the model and compared to the known (reference) values. The procedure is 
repeated until all samples have been kept out exactly once and cross validation prediction errors 
have been obtained for all substances. 

• Test set validation. Test set validation is used when there are enough data available to exclude 
some of it, called the test set, from the model estimation and use it solely for validation. The 
model is estimated from the remaining data, the training set. 

Test set validation is the most reliable method to estimate the true model performance, since if the 
test set is adequately selected, it is exactly equal to future model use; substances that are completely 
unknown to the model are predicted. Cross-validation is a reasonable substitute method if the 
amount of data is limited but the reliability is lower; slightly over-optimistic results are usually 
obtained. 

For multivariate modelling methods and some other modelling methods there is a further 
complication. Validation is usually used both for model complexity selection (e.g. the number of 
PLS components in PLS regression). Since the model complexity selection is usually based on a 
prediction error criterion this can lead to so-called selection bias, which means that over-optimistic 
estimates of model performance are obtained. One way to deal with this problem that has been 
used in this work is to use cross validation to select model complexity and test set validation to 
estimate model performance. This means that selection bias is avoided and that very reliable 
estimates of model performance can be obtained. 

Model performance can be measured by different metrics: 
• R2 (or R2Y) is the part of the variance explained in the training data, i.e. without validation. 

Thus, it does not give information about model performance for new substances. If R2 is 1 the 
model explains the data perfectly, if R2 is zero it is as good to guess a random number as to use 
the model. 

• Q2 is the validation counterpart to R2. It measures the part of the variance explained in the 
validation data. Q2 can be calculated both for cross-validation, in which case it is sometimes 
denoted Q2CV, and for test set validation. 

• RMSEP (root mean square error of prediction) is a measure of the prediction error and has 
the same unit as the response predicted by the model. It is calculated similarly to a standard 
deviation and can be used roughly as a standard deviation of predictions. In the formula, y is 
the reference value and ŷ  is the predicted value. 

( )
n

yy
RMSEP i ii∑ −

=
2ˆ
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• RMSEE (root mean square error of estimation) the non-validated version of RMSEP, i.e. 
corresponding to R2. 

2.2.5 Outliers in QSAR models 

An outlier in a QSAR model is a substance that is in some way different from the rest (majority) of 
the substances used to estimate the QSAR model and for which the model is not valid. The 
difference can be caused by different features in the chemical structure, which is closely related to 
the discussion above on classification of substances prior to modelling. 

The common explanation of a model outlier is that it is badly predicted (has a large y residual) but 
this is a somewhat limited definition since a good prediction may be purely due to chance, although 
the substance class in question is not at all present in the training data. In multivariate statistics, it is 
common to define three types of outliers: 
• X/Y outliers are outliers in the normal meaning, i.e. substances for which the relationship 

between the descriptors (X variables) and the environmental property (Y variable) is not valid, 
e.g. due to different toxicity mechanisms. 

• X outliers. In short, a substance is an X outlier if the molecular descriptors for this substance 
do not conform to the "pattern" (covariance structure) in the (rest of the) training data. A 
different pattern in the descriptors indicates that the substance is different from the training 
data and thus that the prediction is likely to be inaccurate, i.e. a substance that is an X outlier is 
likely to be an X/Y outlier as well. 

• Y outliers are only defined for training or test samples. They are substances for which the 
reference value of the response is bad for some reason. 

It is important to note that outliers can be present both during training (model estimation) and 
model use (prediction). Naturally, since no Y value is normally available during prediction (this is 
why the model is used to estimate the property in question), Y cannot be present and X/Y outliers 
cannot be detected directly. 

However, if multivariate prediction methods are used X outliers can be detected during prediction 
from the X residuals of the projection (also known as: distance to model in X space). This is a 
significant advantage of multivariate projection methods, like PLS, that facilitates automatic 
detection of outliers during the use of a QSAR model. This possibility is a property of the PLS 
method and not of the descriptors used. Thus, the advantage is present regardless of the molecular 
descriptors used although the success is of course dependent on the information content in the 
descriptors.  

2.2.6 Outlier detection 

Outlier detection during prediction, i.e. to detect substances that do not fit in the model and thus 
have a high risk of being poorly predicted, is very important. Since the aim of the prognosis model 
is typically screening of new substances and prioritising further testing it is essential to avoid false 
negative predictions. On the other hand, to predict false positives is less serious, since this will be 
revealed by the testing performed as a result of the QSAR prediction. However, also such 
malpredictions decrease the efficiency of the screening and prioritisation and should, naturally, be 
avoided if possible. 
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Outlier detection during prediction aims at completely avoiding grossly erroneous predictions. If 
the substance in question risks being badly predicted, this should be detected and the prediction 
should be considered unreliable and not used. Other methods for screening and prioritisation 
should then be used, e.g. other QSAR models or testing toxicity. 

When PLS regression is used as the modelling method, as in this work, two measures can be 
considered when judging whether or not a new substance belongs to the model. The first is the 
distance to the model plane (also called residual magnitude) and the second is the distance between 
the model centre and the projection in the model plane. In the SIMCA software, the distance to the 
model plane of a prediction is known as DModXPS (Distance to Model in X space for the 
Prediction Set), while also considering the distance in the model plane leads to the statistic 
DModXPS+. From these distances and the corresponding distances in the training set, it is possible 
to calculate a probability that a (new) substance belongs to the model. These probabilities are 
known as PModXPS and PModXPS+, respectively, in the software.  

In a previous report it was concluded that a PModXPS+ value of 0.001, i.e. 0.1 % theoretical risk of 
erroneously classifying a valid prediction as an outlier, was an appropriate risk level and gave a 
reasonable number of erroneous outlier indications [Furusjö et al. 2001]. 

3 Method 

3.1 Descriptor Calculation 

The calculation of molecular holograms was performed with the Sybyl 6.9 software from Tripos 
Inc. The following different settings for the parameters described in  2.1.1 were used for the 
molecular hologram calculation:   
Fragment distinction: 

1. Atoms + bonds + connectivity 
2. Atoms + bonds + connectivity + chirality 
3. Atoms + bonds + connectivity + hydrogens 
4. Atoms + bonds + connectivity + hydrogens + chirality 

Fragment length: 

1. 2-5 
2. 4-7 
3. 6-9 
4. 7-10 

Hologram length: 

1. 53 
2. 83 
3. 257 
4. 401 

A molecular hologram with the code 123 means that fragments in the hologram have been distinct 
with atoms, bonds and connectivity, and the fragment length is 4-7 and that the hologram length is 
257.  The total number of different holograms calculated is 64 (43). 
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3.2 Statistical Molecular Design – SMD 

Statistical molecular design (SMD) was introduced with the purpose to apply experimental design 
methodology in QSAR modelling [Eriksson, Johansson 1996, Andersson et al. 2000, Eriksson et al. 
2000]. The goal of experimental design is to select a training set for modelling that contains 
maximal information given the number of experiments that can be performed. In QSAR, the 
experiments correspond to substances but their properties (molecular descriptors) cannot be 
designed since they can not be controlled independently in practically all cases. 

SMD uses a large number of candidate structures for which the response (y) variable does not need 
to be measured or known. Molecular descriptors are calculated or measured for all candidate 
substances and PCA is performed on the data set. The principal components that are combinations 
of the molecular properties are referred to as the principal properties (PP) of the data set, since they 
are the combinations that explain the variation among the molecules in an optimal way. The design 
is then performed with respect to the principal properties by selecting a subset of substances that 
are most efficient in spanning the substance (or PCA model) space and thus are the best selection 
of training set for a QSAR model. The selection can be done manually from the score plots if the 
number of principal components (properties) is three to four or less. An algorithm based on 
optimal filling of the experimental space, D-optimality, is necessary when a higher number of PCs 
are used. Such an algorithm can be used for low-dimensional models as well, but it is often 
sufficient to select samples manually. 

The usefulness of SMD and multivariate techniques for exploration of principal properties has been 
shown by Giraud et al. [2000].  

3.3 Estrogenicity test  

3.3.1 Chemicals  

Chemical products were used in tests of in vitro estrogenicity at the purity obtained from the suppliers 
without further purification. Their CAS registration numbers are given in Appendix 1 and 3. 

The following products were obtained from Sigma-Aldrich Sweden AB, Stockholm:  
5α-androstane-3,17-dione (A8255, purity >99 %); 4-androstene-3,17-dione (A9630, purity 98 %); 
(corticosterone (C2505, purity >92 %); dihydrotestosterone (androstane-17β-ol-3-one, A8380, 
purity not stated); esculetin (E2631, purity not stated); 17β-estradiol (E8875, purity >98 %); estriol 
(E1253, purity 99 %); estrone (E9750, purity 99 %); formestane (F2552, purity not stated); 
hexestrol (H7753, purity 98 %); 4-Hydroxytamoxifen (H7904, purity >98 %); 11-ketotestosterone 
(K8250, purity not stated); 17α-metyltestosterone (M7252, purity not stated); morin (M4008, purity 
not stated); S-naringenin (N1251, purity 95 %); norethynodrel (N-7253, purity not stated); 19-
norprogesterone (N2390, purity not stated); quercetin dihydrate (Q0125, purity >98 %); 
pregnenolone (P9129, purity 98 %); progesterone (P8783, purity >99 %); raloxifene hydrochloride 
(R1402, purity not stated); rutin (R5143, purity 95 %); tamoxifen (T5648, purity >99 %); and 
trenbolone (T3925, purity >98 %). 

Androsterone (5α -Androstan-3α-ol-17-one, 21,901-0, purity not stated); bisphenol A (23,965-8, 
purity >99 %); fraxetin (7,8-dihydroxy-6-methoxycoumarin, 25,491-6, purity 98 %), 5,6-
didehydroandrosterone (12,578-4, purity 97 %); 17α-ethinylestradiol (28,586-2, purity not stated); 
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and mestranol (85,587-1, purity not stated) were products from Aldrich Chem. Co. obtained 
through Sigma-Aldrich Sweden AB, Stockholm. Phenolphthalein (1,07233.055) was from Merck 
KgaA, Darmstadt. 

The following stilbene precursors and derivatives: di-piperonyl stilbene; 3',4'-dimethoxy-4-
chlorostilbene; 3',4'-methylenedioxy-2,4-dichlorostilbene; 2,4-dichlorophenyl-3,4-piperonylstilbene; 
3,5-dimethoxy-4-hydroxy-trans-stilbene carboxylic acid; 3,5-dimethoxy-trans-stilbene carboxylic 
acid; 1-(4-chlorophenyl)-2-(3,4-methylenedioxyphenyl)-ethane; 1-(2-chlorophenyl)-2-(3,4-
piperonyl)-ethanol; 2'-chlorophenyl-2-(3´-4´-dimethoxyphenyl)-ethanol; 1-(2,4-dichlorophenyl)-2-
hydroxy-2-(3,4-methylenedioxyphenyl)-ethanone; 1-(2-chlorophenyl)-2-hydroxy-2-(3,4-
dimethoxyphenyl)-ethanone; 1-(2-chlorophenyl)-2-hydroxy-2-(3,4-methylenedioxyphenyl)-
ethanone; and the following flavanone precursors and derivatives: chalcone-3,4-
dimethoxyacetophenone; chalcone-4-chloroacetophenone; chalcone-O-acetate-vanillin 
acetovanillone were kind gifts from Dr. Alasdair Neilson. They were synthesized by procedures in 
literature, with slight modifications, at the purity obtained by repeated recrystallisations. 

The polycyclic aromatic musk fragrances: cashmeran, celestolide, galaxolide, musk moskene (DE 
NIT 132), musk tibetene (NIT 133 purity 99 %), musk xylene, phantolid, tonalide, and traseolide 
were obtained from LGC Promochem AB, Stockholm. Musk ketone (60720 purity >97 %) was the 
product from Fluka Chem. Co. obtained from Sigma-Aldrich Sweden AB, Stockholm. 

3.3.2 Yeast estrogen screen (YES) test 

The estrogenicity test was performed with a recombinant yeast strain, Saccharomyces cerevisiae, with 
the human estrogen receptor α gene incorporated in the main chromosome [Routledge, Sumpter, 
1996]. The yeast cell also contained plasmids carrying the estrogen response element and the 
reporter gene lacZ coding for β-galactosidase. This enzyme, released into the culture medium, will 
catalyse the conversion of the chromogenic substrate, chlorophenol red-β-D-galactopyranoside, 
CPRG, into a red product, which is measured by spectrophotometry in an automatic plate reader 
(Spectracount, Packard). The composition of media and microtitre plate procedure followed 
published descriptions [Routledge, Sumpter, 1996; Beresford et al., 2000, Svenson et al. 2003]. Each 
test was run in triplicate. 17β-Estradiol in ethanol was run on each plate as a positive control using 
a serial dilution factor of 1.8. Otherwise solutions of tested substances were diluted using a factor 
2.0. The plates were incubated for three-four days in darkness at 30 °C until the positive control 
was fully developed. After incubation each plate was shaken for 30 s and left to settle an hour 
before the absorbance was read at 540 nm. 

As a control of cell growth, light absorption (scattering) was measured at 670 nm. Wells with 
reduced cell growth were not included in the calculation of estrogenicity. 

3.3.3 Calculation of EC50 

Dose-response curves measured as absorbance at 540 nm at different concentrations of controls 
and tested substances were evaluated by a non-linear, exponential fit to the experimental data using 
the Solver program in Microsoft Excel. EC50-values and slopes (s) of dose curves were derived 
from a minimization of the sum of deviations of the non-linear fit and the experimental data 
calculated according to: 
Acalc. = Amin + (Amax-Amin)*(Ci/ECi)s/(1+(Ci/ECi)s) 
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EC50 values of tested substances were expressed in molar units and transformed to negative tenth-
powers of millimolar concentrations (pEC50, mM). Data was also expressed relative to the 
estrogenicity of the positive control 17β-estradiol. 

4 Results and discussion 

4.1 SMD 

SMD was used to select substances for laboratory testing of estrogenicity in own experiments. The 
molecular hologram, i.e. with chiral HQSAR descriptors, indicated with the numerical code 433, 
was used. A PCA model was calculated for all substances for which holograms with chiral HQSAR 
descriptors were available, including substances with and without known in vitro estrogenicity. Three 
substances, betulin, sitosterol and kepone were removed during modelling since they were extremes 
in the PCA model. Kepone would cause waste disposal problems in the experimental testing.  

Four principal components were used. Five regions were identified in the score plots for PC1/PC2 
and PC3/PC4 as shown in Figure 1. The substances appearing in the five regions are listed in 
Appendix 4. 
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Modelling endocrine disruption  IVL report B1759 
Quantitative structure-activity relationships for three estrogenic end-points  

15 

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

t[4
]

t[3]  
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4, ♦ - region 5, ● – not assigned to any region, ● - no biological response values available.  

By using the score plots above a representative subset of substances from all regions was selected 
for YES tests. The substances that were selected are presented in Table 1. 

Table 1.  Substances selected for YES tests  

Region Substance 

1 4-Hydroxytamoxifen 

“ Fenolftalein 

“ Tamoxifen 

2 Raloxifene HCl 

“ Hexestrol 

3 Rutin 

4 Norethynodrel 

“ Formestane 

“ 4-Androstene-3,17-dione 

“ 5,6-Didehydroandrosterone 

5 5a-Androstane-3,17-dione  

“ Dihydrotestosterone 

“ Androsterone 

“ Metyltestosterone 

“ Esculetin 

“ Quercetin 

“ Stilbene carbocylic acid, B 3,5-dimethoxy-4-hydroxy 

“ Stilbene carboxylic acid, A 3,5-dimethoxy- 

“ Musk xylene 

“ Trenbolone 
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4.2 Estrogenicity end-points 

Three estrogenic response end-points were used for modelling. Data were obtained from literature 
or generated by own testing using SMD for selection of substances. Furthermore three groups of 
substances were selected for testing: musk fragrances, chlorinated and other stilbene and chalcone 
derivatives and precursors. The stilbenes and chalcones were selected because of their possible 
occurrence in pulp bleaching processes and for musk fragrances there was a general lack of 
experimental data. 

4.2.1 Yeast estrogen screen (YES) test, EC50, absolute values 

A number of sources report estrogenic responses of single compounds tested with recombinant 
yeast strains transfected with genes for the human estrogen receptor α. Test procedures, although 
basically similar, vary in performance and different factors influencing the test results have been 
identified [Beresford et al. 2000]. Usually 17β-estradiol has been used as a positive control, and a 
span in EC50 between 1.5 and 126 pM [cf. Versonnen et al. 2002, Schultz et al. 1998] emphasizes a 
need for selection criteria. Own experiments have gained a substantial set of data for the positive 
control, from which an average and measures of variation may be derived. Because of the shape of 
dose curves, a log-normal average of the EC50 was calculated using a published assay procedure 
[Routledge, Sumpter 1996] with some modifications [Beresford et al. 2000, Svenson et al. 2003]. 
The average EC50 for 17β-estradiol in 288 tests was 62.4 pM. The limits of one standard deviation 
were 33-118 pM. 

Thus values of EC50 reported in literature with positive controls within these limits were accepted, 
transformed into p(EC50, mM). Own experimental data were generated with this criterion. Chemical 
products consisting of mixtures of position isomers or stereoisomers were not included. On the 
other hand preparations possibly containing small impurities of highly potent hormones that could 
cause the test response have not been considered. All own data were obtained from tests with 
commercial preparations of the best purity available. 

Data is presented in Appendix 1. Some of the substances that were tested in the yeast estrogen 
screen test were either not responsive at the concentrations administered or showed dose curves 
that were severely disturbed by cytotoxic effects. These results are compiled in Appendix 3. The 
compounds were not included in the modelling of estrogenicity. 

4.2.2 Yeast estrogen screen (YES) test, EC50, relative values 

Estrogenic responses reported with control values within or outside the limits of estrogenicity for 
the reference substance, 17β-estradiol, 33-118 pM, were transformed to relative molar potencies 
(molar ratios between EC50s of a substance and 17β-estradiol), log transformed and used for 
modelling. Reports not stating the estrogenicity of 17β-estradiol were not included. Data on relative 
estrogenic response in the yeast screen assay are compiled in Appendix 1.  

4.2.3 Relative binding affinity (RBA) 

A considerable amount of data has been published on the binding affinity of different substances to 
the estrogen receptors. Various sources report interference with estrogenic receptors prepared from 
different organs and a number of different mammalian species. Different types of estrogenic 
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receptors appear also in the same tissues. Because of a variation in specificity in receptors of 
different types, probably also from different organs and species, data were selected for the human 
estrogen α receptor. This estrogenic response was also used for modelling. Data was reported as 
the binding affinity relative to that of 17β-estradiol expressed in percentage on molar basis. The 
percentage values were log transformed. Data used are given in Appendix 2. 

4.3 Modelling results 

Before viewing the modelling results it can be interesting to note the distribution and span of the 
toxicity values in the data sets used for modelling. These are shown in the histograms in Figure 4 
below and values are also given in Appendix 1 and 2.  
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Figure 4. Histograms showing the distribution of pEC50 (upper left), log RMP (upper right) and log RBA 
(lower left) in the data.  

The histograms show that all three responses were fairly normally distributed. p(EC50) varied 
between -0.1 and 7.7 (median 3.0), .  log RMP between -7.5 and 0.5 (median -4.4), and log RBA 
between -2 to 2.5 (median -0.2). The spans were considerable, 4.5, 7.8 and 8.0 tenth-powers, 
respectively for the three data sets. 

4.3.1 Screening of hologram configurations 

To find the hologram configurations that constitute the best data for modelling, all configurations 
from 111 to 444 were investigated. To relate the chemical structure of the substances summarized 
in the descriptors to the biological response of interest (p(EC50), log RMP or log RBA) PLS 
models for every combination for each response were calculated. The best models for p(EC50), log 
RMP and log RBA had a Q2 value of 0.43, 0.47 and 0.54 respectively (for a summary of the best 
hologram configurations, see Table 2 and for Q2 for all hologram configurations, see Appendix 5 – 
Hologram configurations and corresponding Q2).  
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Table 2.  Hologram configurations and corresponding Q2 values for the 
best models for each biological response.  

 Hologram configuration Q2 Q2 rank 
p(EC50) 441 0.425 1 
 424 0.419 2 
 433 0.402 3 
 324 0.39 4 
log RMP 233 0.473 1 
 222 0.469 2 
 434 0.45 3 
 211 0.434 4 
log RBA 413 0.544 1 
 424 0.508 2 
 414 0.507 3 
 411 0.493 4 

Common for p(EC50) and log RBA was that the models with the highest Q2 value were based on 
data containing information about atoms, bonds, connectivity, hydrogens and chirality (i.e. 
hologram configuration 4xx). The best models for log RMP used combination 2xx or 4xx. Both 
4xx and 2xx takes atoms, bonds, connectivity and chirality into account when the molecular 
holograms are generated. The fact that they consider chirality separates them from 1xx and 3xx. 

The models for the hologram configurations with the best Q2 values for each biological response 
variable were selected to be further refined.  

It is also worth mentioning that for the log RBA models the substances dieldrin and kepone were 
often missing or outliers and therefore excluded. An example is shown in Figure 5 below. 
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Figure 5. An example of a model where kepone and dieldrin were outliers and therefore excluded. The bar 
diagram shows the prediction error for each observation (substance) in the workset computed from 
the model with that specific observation removed.  

Kepone and dieldrin had considerable prediction errors and were therefore excluded from further 
modelling. 
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4.3.2 Selection of representative validation set 

To evaluate and compare the models, one third of the observations were excluded and used as 
validation set for semi-external validation. The observations were not used in the construction of the 
models, but included in the data set in the selection of variables to be included in the pruned 
models. A validation set makes it possible to calculate RMSEP (Root Mean Square Error of 
Prediction). An RMSEP value of for example X means that the model can predict the value of an 
observation that is new to the model with a precision of ±X.  

The samples that formed the validation sets were selected in such a way that they were as 
representative as possible for the whole data sets. This was done by calculating PCA models for 
p(EC50), log RMP and log RBA and, by visual inspection, selecting substances that were spread in a 
representative way in the score plot for each model (Figure 6).  
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Figure 6. PCA score plots showing the observations selected as validation set (marked with squares) and the 
observations selected as training set (not marked with squares) for the p(EC50) (a), log RMP (b) and 
log RBA models. Each triangle represents one substance.  

The substances that were selected for validation according to Figure 6 are presented in further 
detail in Appendix 1 and 2.  

4.3.3 Models for p(EC50), log RMP and log RBA 

The four models with the highest Q2 value for each biological response in the screening were 
further refined by exclusion of variables (descriptors) that did not contribute positively to the 
model. By the exclusion procedure the number of variables were lowered from 53-401 to 10-115. 
The descriptors that the pruned models were calculated on are shown in Appendix 6 – Descriptors 
in pruned models. The chemical interpretation of the included hologram fragments in the 
descriptors used was not carried out. The Q2 value was increased for all the selected combinations, 
and the average Q2 increase was 27%. To investigate the presence of possible outliers and to 
evaluate the effect of excluding them, the PModXPS+ based outlier detection method (see chapter 
 2.2.6) was used. In the cases where outliers were detected with the PModXPS+ based outlier 
detection method and the outliers were removed from the test-set, the RMSEP values of the 
unpruned models decreased with 8 % and the RMSEP values of the pruned models increased with 
2 %. Thus, the outlier detection tool was not as successful as was previously shown [Furusjö et al, 
2001]. This might be due to the fact that the substances used in this case were more homogenous.  

A summary of the characteristics of the original and the pruned models for every selected 
combination for each response is shown in Table 3. 
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Table 3.  Properties of the pruned models compared to the unpruned models. The hologram 
configuration(s) resulting in the best model(s) for each response are written in bold. Original 
– the models based on all the variables, Pruned – the models based on pruned data.  

  Original  Pruned 

 Conf A Q2 RMS 
EE 

RMS 
EP 

RMS 
EP* 

Var A Q2 RMS 
EE 

RMS 
EP 

RMS 
EP* 

Var 

p(EC50) 441 4 0.425 1.19 1.48  - 53 3 0.470 1.24 1.47 1.49 (1) 17 

 424 2 0.419 1.09 1.36 1.07 (4) 401 2 0.555 1.08 1.10 1.21 (4) 99 

 433 3 0.402 1.21 1.45 1.52 (2) 257 2 0.513 1.19 1.37 - 26 

 324 2 0.390 1.12 1.28 1.24 (5) 401 2 0.497 1.13 1.11 0.99 (4) 115 

log RMP 233 2 0.473 1.28 1.05 - 257 3 0.539 1.12 1.06 1.10 (3) 72 

 222 3 0.469 1.19 1.06 1.01 (4) 83 3 0.649 1.03 0.82 0.84 (1) 16 

 434 2 0.450 1.34 1.11 - 401 2 0.526 1.27 1.08 1.11 (2) 63 

 211 2 0.434 1.15 1.31 1.17 (2) 53 2 0.604 1.08 1.08 1.14 (3) 23 

log RBA 413 2 0.544 0.64 1.15 1.07 (2) 253 3 0.734 0.59 0.64 - 10 

 424 3 0.508 0.62 0.90 0.88 (1) 401 2 0.668 0.64 0.71 0.72 (1) 94 

 414 2 0.507 0.64 1.25 1.00 (3) 364 1 0.694 0.66 0.79 0.78 (2) 30 

 411 3 0.493 0.74 1.17 - 53 1 0.538 0.84 1.08 - 13 

A:  Number of components 
RMSEP*:  RMSEP when substances with PModX+ < 0.1% were removed from the validation set,   
 number of outliers excluded is showed within brackets 
Var:   Number of variables included in the model 

The hologram configuration 424 was one of the best configurations for modelling of p(EC50). The 
original model, where no variables were excluded, had an RMSEP of 1.36, and the pruned model 
had an RMSEP of 1.10. The PModXPS+ outlier detection detected four outliers. By visual 
inspection of the observed vs. predicted plot (Figure 7) it seemed that the predictions of the 
outliers, especially for three of the substances, were as good as for the other substances. A 
permutation validation was performed to investigate if the pruning resulted in an increased degree 
of over-fit, which was not the case. The over-fit rather decreased after the pruning of the data set. 
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Figure 7. Observed vs predicted values for p(EC50) (i.e. y-axis: measured p(EC50) values, x-axis: by the 

model predicted p(EC50)) hologram configuration 424 (pruned model). Substances in red (■) were 
considered to be outliers by the PModX+ detection function and substances in black (▲) were not 
considered as outliers. 

For log RMP, the hologram configuration 222 resulted in the best models. The RMSEP of the 
original model, based on all the variables, was 1.06, and pruning of that model resulted in a decrease 
in RMSEP to 0.84. The observed vs. predicted plot for the pruned model is shown in Figure 8. The 
permutation validation did not indicate that the pruning caused an increased over-fit of the model. 
Exclusion of the outlier that was detected by the PModXPS+ method increased the RMSEP value. 
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Figure 8. Observed vs. predicted values for log RMP (i.e. y-axis: measured log RMP values, x-axis: by the 
model predicted log RMP values), hologram configuration 222 (pruned model). Substances in red 
(■) were considered to be outliers by the PModX+ detection function and substances in black (▲) 
were not considered as outliers. 
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Hologram configuration 424 resulted in the best models for log RBA. The original model had an 
RMSEP of 0.90 and the pruned model (Figure 9) of 0.71. As in the log RMP case one substance 
was detected as an outlier in the pruned model, but exclusion of the outlier did not increase the 
RMSEP. The permutation validation indicated a reduced probability for over-fit of the model.  
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Figure 9. Observed vs predicted values for log RBA (i.e. y-axis: measured log RBA values, x-axis: model 
predicted log RBA values), hologram configuration 424 (pruned model). Substances in red (■) were 
considered to be outliers by the PModX+ detection function and substances in black (▲) were not 
considered as outliers. 

RMSEP was chosen as a measure of model performance. The RMSEP value is dependent on how 
the validation set is selected and therefore varies with different content in the validation set. In this 
investigation validation sets were selected based on the position of the substances in PCA score 
plots, but there are also other methods for validation set selection that could be interesting to 
evaluate.  

The RMSEP-value calculations were based on semi-external validation, where the substances that 
made up the validation set were also involved in the pruning procedure, since they contained 
information that would be unfavourable to exclude from the modelling procedure. If more 
substances with known biological responses were available, an ordinary external validation could be 
done and a more information gained. 

The PModXPS+ method for outlier detection showed a tendency to classify substances as outliers 
even though they were proven to be relatively correctly estimated by the model. It might still be a 
useful tool when screening substances with unknown biological response, since it is better if a 
method classifies “normal” substances as outliers than classifies outliers as “normal”. The 
PModXPS+ function could probably be improved by including more substances in the training set, 
since the model would then be trained on a broader diversity of substance structures. 
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5 Conclusions 

Using molecular hologram descriptors and the multivariate method PLS, it should be possible to 
predict estrogenic properties in compounds before experimental testing. Three properties, i.e. 
binding affinity and induction of the human receptor estrogen α (in absolute and relative values), 
may be predicted using models developed in this work. To generate molecular holograms a specific 
program is needed. The best models predicted these properties within a factor 10 (RMSEP within 
0.7 – 1.0), which should be sufficient for screening purposes. The models for binding affinity 
performed slightly better than the others and models based on chirality of compounds better than 
those not considering this property. No systematic effect of hologram length and fragment length 
could be noted. The chemical interpretation of the included hologram fragments in the descriptors 
used was not carried out. The method for outlier detection had a tendency to classify “normal” 
samples as outliers, but might still be a useful tool for detection of substances that do not belong to 
the model in a screening case where the structural span is larger.  
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Appendices 

Appendix 1 - Receptor induction data 

Estrogens used for construction and testing of QSAR models, their yeast estrogen screen test 
potency (p(EC50, mM) and relative molecular potency* (RMP). Values in bold face were selected as 
validation set for models constructed on values in normal face. 
 
Substance CAS No p(EC50, mM) log RMP* Source 

17α-Ethinylestradiol 57-63-6 7,682 0,473 this study 
Hexestrol 84-16-2 7,650 0,335 this study 
17β-Estradiol 50-28-2 7.241 0.000 this study 
2-Hydroxyestradiol 362-05-0  -0,523 Saito & al. 2002 
Estrone 53-16-7 6,626 -0,583 this study 
17α-Estradiol 57-91-0  -1.000 Saito & al. 2002 
2',4',6'-Trichloro-4-biphenylol 14962-28-8  -1,606 Schultz & al. 1998 
Norethynodrel 68-23-5 5,652 -1,663 this study 
Mestranol 72-33-3 5,445 -1,671 this study 
2',3',4',5'-Tetrachloro-4-biphenylol 67651-34-7  -2,000 Schultz & al. 1998 
Estriol 50-27-1 4,932 -2,277 this study 
2-Hydroxyestrone 362-06-1  -2,301 Saito & al. 2002 
4-(1-Adamantyl)-phenol 29799-07-3 5,068 -2,340 Schultz & al. 2000 
4-Hydroxytamoxifen 68047-06-3 4,513 -2,675 this study 
2',5'-Dichloro-4-biphenylol 53905-28-5  -3,004 Schultz & al. 1998 
Ethyl-4'-hydroxy-4-biphenyl 
carboxylate 

50670-76-3 4,298 -3,109 Schultz & al. 2000 

Quercetin dihydrate 117-39-5 4,315 -3,149 this study 
Dihydrotestosterone 521-18-6 3.884 -3.289 this study 
Benzyl-4-hydroxy-benzoic acid 94-18-8 3,971 -3,437 Schultz & al. 2000 
Isoamyl-4-hydroxy-benzoate 6521-30-8 3,932 -3,476 Schultz & al. 2000 
5α -Androstan-3α-ol-17-one 
(=androsterone) 

53-41-8 3.676 -3.498 this study 

2-Ethylhexyl-4'-hydroxy-benzoate 5153-25-3 3,866 -3,541 Schultz & al. 2000 
Nonyl-4-hydroxybenzoic acid 38713-56-3 3,783 -3,625 Schultz & al. 2000 
Equol 531-95-3  -3,638 Breinholt & Larsen, 

1998 
4-tert-Octylphenol 140-66-9 3,752 -3,656 Schultz & al. 2000 
Phenyl-4-hydroxybenzoate 17696-62-7 3,642 -3,766 Schultz & al. 2000 
4-Phenoxyphenol 831-82-3 3,582 -3,826 Schultz & al. 2000 
4'-Chloro-4-biphenylol 28034-99-3  -3,921 Schultz & al. 1998 
N-(4-Hydroxyphenyl)-2-naphthylamine 93-45-8 3,382 -4,026 Schultz & al. 2000 
4-Chloro-4'-hydroxy-benzophenone 42019-78-3 3,377 -4,031 Schultz & al. 2000 
Bisphenol A 80-05-7 3,597 -4,041 this study 
Raloxifene hydrochloride 84449-90-1 3,335 -4,107 this study 
Naringenin 480-41-1  -4,115 Breinholt & Larsen, 

1998 
4-Benzyloxyphenol 103-16-2 3,265 -4,143 Schultz & al. 2000 
5,6-Didehydroandrosterone 53-43-0 2.944 -4.229 this study 
5a-Androstane-3,17-dione 846-46-8 3,219 -4,244 this study 
Genistein 446-72-0  -4,337 Breinholt & Larsen, 

1998 
4'-Hydroxyoctano-phenone 2589-73-3 3,053 -4,355 Schultz & al. 2000 
Benzyl-4-hydroxyphenyl ketone 2491-32-9 3,045 -4,363 Schultz & al. 2000 
4-Hydroxybenzophenone 1137-42-4 3,007 -4,401 Schultz & al. 2000 
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Substance CAS No p(EC50, mM) log RMP* Source 

Trenbolone 10161-33-8 3,010 -4,453 this study 
4-Phenylphenol 92-69-3 2,939 -4,469 Schultz & al. 2000 
4-Hydroxybenzoic acid, propyl ester 94-13-3  -4,477 Routledge & al. 1998 
4,4'-Biphenol 92-88-6  -4,634 Schultz & al. 1998 
4-n-Heptyloxyphenol 13037-86-0 2,726 -4,682 Schultz & al. 2000 
4-n-Octylphenol 1806-26-4 2,724 -4,684 Schultz & al. 2000 
4-Hydroxybenzoic acid, n-butyl ester 94-26-8 2,697 -4,711 Schultz & al. 2000 
4-Benzylphenol 101-53-1 2,674 -4,734 Schultz & al. 2000 
Metyltestosterone  58-18-4 2.426 -4.747 this study 
4-Cyclopentylphenol 1518-83-8 2,618 -4,790 Schultz & al. 2000 
4-Hexyloxyphenol 18979-55-0 2,377 -5,031 Schultz & al. 2000 
4-tert-Amylphenol 80-46-6 2,322 -5,085 Schultz & al. 2000 
Tamoxifen 10540-29-1 2.386 -5.102 this study 
4-n-Amylphenol 14938-35-3 2,022 -5,386 Schultz & al. 2000 
3',5'-Dimethoxy-4'-hydroxy-trans-
stilbene carboxylic acid 

 2,059 -5,405 this study 

4-n-Pentyloxyphenol 18979-53-8 1,762 -5,646 Schultz & al. 2000 
4-Androstene-3,17-dione 63-05-8 1,637 -5,678 this study 
4-n-Butoxyphenol 122-94-1 1,726 -5,682 Schultz & al. 2000 
Phloretin 60-82-2  -6,036 Breinholt & Larsen, 

1998 
3',5'-dimethoxy-trans-stilbene 
carboxylic acid 

 1,246 -6.081 this study 

4-tert-Butylbenzoic acid 98-73-7 1,124 -6,085 this study 
N-Benzyl-4-hydroxyaniline 103-14-0 1,203 -6,205 Schultz & al. 2000 
4-Hydroxybenzoic acid, ethyl ester 120-47-8 1,124 -6,284 Schultz & al. 2000 
4'-Hydroxypropio-phenone 70-70-2 1,080 -6,328 Schultz & al. 2000 
4-Hydroxybenzoic acid, methyl ester 99-76-3  -6,398 Routledge & al. 1998 
2,6-Diisopropyl-naphthalene 24157-81-1  -6,423 Vinggaard & al. 2000 
Musk xylene 81-15-2 0,961 -6,503 this study 
Formestane 566-48-3 0,923 -6,519 this study 
4-Propylphenol 10210-17-0 0,824 -6,584 Schultz & al. 2000 
Phenolphthalein  77-09-8 0,849 -6,593 this study 
4-Propoxyphenol 18979-50-5 0,785 -6,623 Schultz & al. 2000 
2-Hydroxybiphenyl 90-43-7  -6,728 Vinggaard & al. 2000 
Rutin 153-18-4 0,673 -6,769 this study 
Esculetin 305-01-1 0,386 -6,928 this study 
4-Chloro-3-methylphenol 59-50-7  -7,276 Vinggaard & al. 2000 
4-(Imidazolyl-1-)phenol 10041-02-8 -0,097 -7,505 Schultz & al. 2000 

17β-Estradiol reference compound 
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Appendix 2 - Binding affinity data 

Relative binding affinity data on substances used for construction and testing of human estrogen 
receptor α RBA QSAR models. Values in bold face were selected as validation set for models 
constructed on values in normal face.  
Substance CAS No log RBA Source 
Diethylstilbestrol 56-53-1 2,670 Kuiper & al, 1997 
Hexestrol 84-16-2 2,480 Kuiper & al, 1997 
4-Hydroxytamoxifen 68047-06-3 2,410 Kuiper & al, 1997 
Dienestrol 84-17-3 2,348 Kuiper & al, 1997 
17β-Estradiol 50-28-2 2,000 Kuiper & al, 1997 
Coumestrol 479-13-0 1,973 Kuiper & al, 1997 
ICI-164384  1,929 Kuiper & al, 1997 
16α-Bromo-17β-estradiol 54982-79-5 1,881 Kuiper & al, 1998 
Raloxifene 84449-90-1 1,839 Kuiper & al, 1998 
Estrone 53-16-7 1,778 Kuiper & al, 1997 
17α-Estradiol 57-91-0 1,763 Kuiper & al, 1997 
Nafoxidine 1845-11-0 1,643 Kuiper & al, 1997 
Moxestrol 34816-55-2 1,633 Kuiper & al, 1997 
17-Epiestriol 547-81-9 1,462 Kuiper & al, 1998 
Clomifene 911-45-5 1,398 Kuiper & al, 1997 
β-Zearalanol 26538-44-3 1,204 Kuiper & al, 1997 
Estriol 50-27-1 1,146 Kuiper & al, 1997 
4-Hydroxyestradiol 5976-61-4 1,114 Kuiper & al, 1997 
Zearalenone 17924-92-4 1,000 Kuiper & al, 1998 
2-Hydroxyestradiol 362-05-0 0,845 Kuiper & al, 1997 
Tamoxifen 10540-29-1 0,845 Kuiper & al, 1997 
5-Androstenediol 521-17-5 0,778 Kuiper & al, 1997 
Genistein 446-72-0 0,699 Kuiper & al, 1997 
2',3',4',5'-Tetrachloro-4-biphenylol 67651-34-7 0,531 Kuiper & al, 1997 
3β-Androstanediol 571-20-0 0,477 Kuiper & al, 1997 
2',4',6'-Trichloro-4-biphenylol 14962-28-8 0,380 Kuiper & al, 1997 
2-Hydroxyestrone 362-06-1 0,301 Kuiper & al, 1998 
HPTE  0,230 Bolger & al, 1998 
16-Keto-17β-estradiol 566-75-6 0,114 Kuiper & al, 1998 
Norethrynodrel 68-23-5 -0,155 Kuiper & al, 1997 
4-Androstenediol 1156-92-9 -0,301 Kuiper & al, 1997 
o,p'-DDT 789-02-6 -0,317 Bolger & al, 1998 
2,2',3',4',6'-Pentachloro-4-biphenylol 59512-50-4 -0,523 Kuiper & al, 1998 
2,2',4',6'-Tetrachloro-4-biphenylol 150304-08-8 -0,523 Kuiper & al, 1998 
4-Nonylphenol 104-40-5 -0,477 Bolger & al, 1998 
4-t-Octylphenol 140-66-9 -0,761 Bolger & al, 1998 
Daidzein 486-66-8 -0,699 Kuiper & al, 1998 
2',3,4',6'-Tetrachloro-4-biphenylol 150304-08-8 -0,745 Kuiper & al, 1998 
2',3,3',4',6'-Pentachloro-4-biphenylol  -0,886 Kuiper & al, 1998 
2',3,3',4',5'-Pentachloro-4-biphenylol  -0,959 Kuiper & al, 1998 
2,2',3,3',4',5,5'-Heptachloro-4-biphenylol 158076-64-3 -1,000 Kuiper & al, 1998 
2,2',3,4',5,5',6-Heptachloro-4-biphenylol 158076-68-7 -1,000 Kuiper & al, 1998 
2,2',3',4',5'-Pentachloro-4-biphenylol  -1,000 Kuiper & al, 1998 
2,2',3',4,4',5,5'-Heptachloro-4-biphenylol  -1,046 Kuiper & al, 1998 
2,2',3',5',6'-Pentachloro-4-biphenylol  -1,046 Kuiper & al, 1998 
2,2',3,3',4',5-Hexachloro-4-biphenylol 158076-62-1 -1,155 Kuiper & al, 1998 
3α-Androstanediol 1852-53-5 -1,155 Kuiper & al, 1997 
Norethindrone 68-22-4 -1,155 Kuiper & al, 1997 
2',3,3',5',6'-Pentachloro-4-biphenylol  -1,222 Kuiper & al, 1997 
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Substance CAS No log RBA Source 
Chlordecone (Kepone) 143-50-0 -1,222 Kuiper & al, 1998 
p,p'-DDT 50-29-3 -1,222 Bolger & al, 1998 
5α-Dihydrotestosterone 521-18-6 -1,301 Kuiper & al, 1997 
Bisphenol A 80-05-7 -1,301 Kuiper & al, 1997 
Dehydroepiandrosterone 53-43-0 -1,398 Kuiper & al, 1997 
2,2',3,4',5,5'-Hexachloro-4-biphenylol 145413-90-7 -1,523 Kuiper & al, 1997 
2,3,3',4',5'-Pentachloro-4-biphenylol  -1,523 Kuiper & al, 1997 
4-n-Octylphenol 1806-26-4 -1,699 Kuiper & al, 1998 
Benzylbutylphthalate 85-68-7 -1,824 Bolger & al, 1998 
19-Nortestosterone 434-22-0 -2,000 Kuiper & al, 1997 
2',3,3'4',5-Tetrachloro-4-biphenylol  -2,000 Kuiper & al, 1997 
Methoxychlor 72-43-5 -2,000 Kuiper & al, 1997 
5α-Dihydrotestosterone 521-18-6 -2,018 Bolger & al, 1998 
Dieldrin 60-57-1 -3,049 Bolger & al, 1998 

* 17β-Estradiol reference compound 
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Appendix 3 - Receptor induction data below detection 
limit 

Substances tested with no response in the yeast screen. Experimental data that was not used in 
model construction. 
Substance CAS 

Registration 
No 

Type of substance EC50 
(mg/L) 

Maximal 
tested 
concentration 
(mg/L) 

Chalcone-3,4-
dimethoxyacetophenone 

 Flavanone derivative >> 149  

Chalcone-4-chloroacetophenone  Flavanone derivative >> 137  
Chalcone-O-acetate-vanillin 
acetovanillone 

 Flavanone derivative >> 525  

Cashmeran  33704-61-9 Musk fragrance >> 245  
Celestolide 13171-00-1 Musk fragrance >> 145  
Galaxolide 1222-05-5 Musk fragrance >> 120 24 
Musk ketone 81-14-1  Musk fragrance > 100  
Musk moskene 116-66-5 Musk fragrance > 1000 1000 
Musk tibetene 145-39-1 Musk fragrance >> 380  
Phantolid 15323-35-0 Musk fragrance >> 145  
Tonalide 1506-02-1 Musk fragrance >> 990  
Traseolide 68140-48-7 Musk fragrance >> 35  
Fraxetin 574-84-5 Phytoestrogen >> 250  
Morin 480-16-0 Phytoestrogen > 10 60 
S-Naringenin 93602-28-9 Phytoestrogen > 100 500 
Corticosterone 50-22-6 Steroid hormone >>500  
11-Ketotestosterone 564-35-2 Steroid hormone > 50 100 
Norprogesterone 472-54-8 Steroid hormone > 85 85 
Pregnenolone 145-13-1 Steroid hormone > 30 30 
Progesterone 57-83-0 Steroid hormone >> 1000  
2,4-Dichlorophenyl-3,4-
piperonylstilbene 

 Stilbene derivative > 30 77.5 

3',4'-Dimethoxy-4-chlorostilbene  Stilbene derivative >> 525  
3',4'-Methylenedioxy-2,4-
dichlorostilbene 

 Stilbene derivative >> 725  

1-(4-Chlorophenyl)-2-(3,4-
methylenedioxyphenyl)-ethane 

 Stilbene derivative >> 285  

1-(2-Chlorophenyl)-2-(3,4-
piperonyl)-ethanol 

 Stilbene derivative >> 655  

2'-Chlorophenyl-2-(3´-4´-
dimethoxyphenyl)-ethanol 

 Stilbene derivative >> 515  

1-(2,4-Dichlorophenyl)-2-hydroxy-2-
(3,4-dimethoxyphenyl)-ethanone 

 Stilbene derivative >> 45  

1-(2,4-Dichlorophenyl)-2-hydroxy-2-
(3,4-methylenedioxyphenyl)-
ethanone 

 Stilbene derivative >> 197  

1-(2-Chlorophenyl)-2-hydroxy-2-
(3,4-methylenedioxyphenyl)-
ethanone 

 Stilbene derivative >> 164  
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Appendix 4 – SMD selection 

Substances in the five regions identified by SMD  
 
Region 1 Region 2 Region 3 Region 4 Region 5 

 
3-(4-Phenol)-2'-methane-
indene 

3,3-bis(4-
Hydroxyphenyl)-
pentane 

Cashmeran 11β-Hydroxy 
androstenedione 

11-Keto 
androsterone 

3-(4-Phenol)-
2'trifluormethane-indene 

4,4-bis-(4-
Hydroxyphenyl)-
heptane 

Celestolide 11-Hydroxy 
androstenedione 

17α-Hydroxy 
progesterone 

3-(4-Phenol)-3'-nitro-
indene 

4-tert-Heptylphenol Equilenin 11-Ketotestosterone 4-Androstenediol 

3-(4-Phenol)-4'-bromo-
indene 

4-tert-Hexylphenol Galaxolide 17α-Methylestradiol 5α-Androstane 
dione 

3-(4-Phenol)-4'-hydroxy-
indene 

4-tert-Octylphenol-
diethoxylate 

Musk 
moskene 

1-Dehydro 
testosterone 

5β-Androstane-3β-
11β-diol-17-one 

3-(4-Phenol)-4'-nitrilo-
indene 

4-tert-Octylphenol-
tertethoxylate 

Nafoxidine 5,6-Didehydro 
androsterone 

Androstane-3,17-
dione 

3-(4-Phenol)-4'-nitro-
indene 

3,3'-Dihydroxyhexestrol Phantolid Androstenedione Corticosterone 

3-(4-Phenol)-6-hydroxy-
indene 

Hexestrol RU-2341 Estradiol-17β-
glucuronide 

ICI182780 

3-(4-Phenol)-indene-2 Indenestrol-A Rutin Formestane Methyltestosterone 

3-(4-Phenol)-indene Indenestrol-A-(R-
enantiomer) 

 Moxestrol Mibolerone 

3-Benzyl-4'-hydroxy-
indene 

Indenestrol-A-(S-
enantiomer) 

 Norethynodrel Norprogesterone 

3-Benzyl-4'-nitro-indene Indenestrol-B  Norluton Pregnenolone 

3-Benzyl-indene Musk ketone  Nortestonate Progesterone 

3-Ethyl-4'-hydroxy-indene Musk tibetene  RU-2453 RU-1364 

3-Ethyl-6-hydroxy-indene Nordihydroguaiaretic 
acid 

  Testosterone 

3-Phenyl-4'-hydroxy-
indene 

Procymidone    

Clomifene Raloxifene    

2,2-bis-(4-Hydroxyphenyl)-
propane 

    

Bisphenol-B     

Droloxifene     

4-Hydroxytamoxifen     

Musk xylene     

Phenolphthalein     

RU-56187     

Tamoxifen     

Toremifene     

Zindoxifene     
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Appendix 5 – Hologram configurations and 
corresponding Q2 

Q2 values for PLS-models for p(EC50), log RMP and log RBA based on all combinations of 
hologram configurations. The hologram configurations are also ranked from 1 to 64 according to 
Q2 value – the higher the Q2 the better the rank. The hologram configurations marked with grey 
and bold face correspond to the four highest Q2 values for each response.  

 p(EC50) log RMP log RBA 
Hologram 
configuration  Q2 Q2 rank Q2 Q2 rank Q2 Q2 rank 

111 0.257 42 0.377 28 0.315 54 

112 0.056 63 0.184 62 0.366 40 

113 0.125 61 0.196 61 0.306 56 

114 0.199 52 0.228 58 0.33 52 

121 0.382 7 0.382 24 0.271 58 

122 0.335 22 0.328 49 0.337 51 

123 0.149 59 0.349 40 0.401 29 

124 0.206 51 0.286 56 0.419 23 

131 0.255 43 0.298 55 0.412 25 

132 0.36 14 0.398 20 0.444 14 

133 0.358 15 0.401 19 0.412 26 

134 0.286 37 0.342 45 0.432 18 

141 0.267 40 0.328 48 0.443 15 

142 0.3 33 0.355 38 0.459 9 

143 0.341 20 0.379 27 0.406 28 

144 0.309 32 0.346 41 0.412 27 

211 0.237 48 0.434 4 0.354 49 

212 0.087 62 0.271 57 0.427 19 

213 0.217 49 0.322 51 0.448 12 

214 0.24 47 0.342 44 0.452 11 

221 0.211 50 0.361 37 0.358 45 

222 0.376 9 0.469 2 0.366 41 

223 0.164 56 0.395 22 0.439 17 

224 0.253 45 0.416 13 0.464 7 

231 0.24 46 0.31 54 0.37 39 

232 0.38 8 0.423 11 0.464 8 

233 0.373 10 0.473 1 0.383 34 

234 0.355 17 0.41 15 0.441 16 

241 0.259 41 0.342 43 0.364 42 

242 0.369 11 0.409 16 0.394 32 

243 0.352 18 0.407 17 0.4 30 

244 0.333 24 0.386 23 0.447 13 

311 0.157 57 0.212 59 0.359 43 

312 0.126 60 0.152 64 0.455 10 

313 0.05 64 0.154 63 0.425 21 

314 0.169 55 0.211 60 0.359 44 
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 p(EC50) log RMP log RBA 
Hologram 
configuration  Q2 Q2 rank Q2 Q2 rank Q2 Q2 rank 

321 0.254 44 0.411 14 0.144 61 

322 0.327 26 0.323 50 0.379 35 

323 0.357 16 0.37 31 0.397 31 

324 0.39 4 0.351 39 0.425 22 

331 0.296 34 0.34 46 0.267 60 

332 0.289 36 0.342 42 0.325 53 

333 0.314 29 0.372 30 0.305 57 

334 0.335 21 0.372 29 0.418 24 

341 0.322 27 0.381 25 0.375 36 

342 0.277 39 0.318 52 0.315 55 

343 0.347 19 0.367 33 0.387 33 

344 0.32 28 0.379 26 0.352 50 

411 0.152 58 0.333 47 0.493 4 

412 0.183 54 0.362 36 0.474 5 

413 0.186 53 0.31 53 0.544 1 

414 0.31 31 0.406 18 0.507 3 

421 0.283 38 0.368 32 0.126 63 

422 0.311 30 0.365 34 0.136 62 

423 0.333 23 0.397 21 0.469 6 

424 0.419 2 0.424 10 0.508 2 

431 0.363 13 0.433 6 0.118 64 

432 0.291 35 0.364 35 0.427 20 

433 0.402 3 0.433 5 0.371 38 

434 0.384 6 0.45 3 0.357 46 

441 0.425 1 0.43 8 0.269 59 

442 0.332 25 0.421 12 0.375 37 

443 0.368 12 0.428 9 0.355 47 

444 0.388 5 0.431 7 0.355 48 
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Appendix 6 – Descriptors in pruned models 

Descriptors used in the pruned models for the estrogenic endpoints p(EC50), log RMP and log 
RBA. 

p(EC50)  log RMP log RBA 

Descriptor 
configuration  424 

Descriptor 
configuration  222 

Descriptor 
configuration  424 

6 140 274 3 11 122 254 

10 143 275 6 15 124 269 

17 151 278 8 19 126 276 

24 152 280 13 20 135 280 

32 155 285 14 21 136 281 

34 161 287 24 23 139 283 

37 162 290 42 24 142 290 

47 163 296 46 28 149 291 

48 166 299 50 31 151 293 

51 167 300 62 36 152 296 

56 168 309 64 37 153 297 

57 169 311 75 43 155 314 

60 178 313 76 48 159 320 

61 179 317 78 53 163 324 

73 181 320 81 54 169 326 

77 190 325 82 55 178 328 

83 202 331   58 179 329 

88 208 336   60 187 336 

90 209 339   61 191 342 

91 222 342   67 199 344 

94 223 345   71 202 346 

98 229 348   76 205 356 

103 232 350   80 207 357 

106 238 360   84 215 360 

110 240 364   94 225 366 

113 244 368   95 228 373 

115 245 370   96 239 380 

116 246 371   99 242 381 

117 249 380   106 245 384 

124 257 381   113 247 388 

125 258 383   115 248 394 

132 260 393   120     

134 265 398         
 


