
# The use of PFAS as processing aids in inhaled medication

M Friel Aer Beatha

### **Inhaler Devices**



### **Inhaler Timeline**

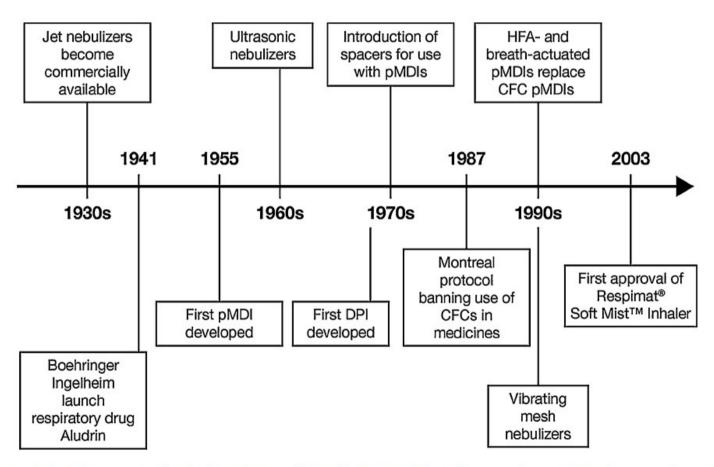
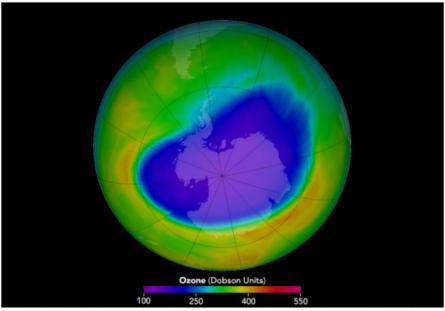
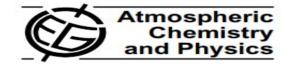



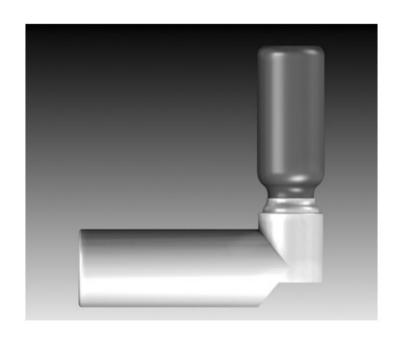

Fig. 1 Historical development of inhaler devices [6–16]. CFC chlorofluorocarbon, DPI dry powder inhaler, HFA hydrofluoroalkane, pMDI pressurized metered dose inhaler


### **Ozone Hole**



NASA began measuring Earth's stratospheric ozone layer by satellite in 1979. By the time the Montreal Protocol went into effect in 1989, ozone concentrations (in Dobson units) had declined significantly over the Antarctic, enlarging the ozone hole. Ozone levels have since stabilized, but recovery is still decades away, according to NASA.

Courtesy Jesse Allen (2016), using Suomi NPP OMPS data provided courtesy of Colin Seftor (SSAI) and Aura OMI data provided courtesy of the Aura OMI science team. Suomi NPP is the result of a partnership between NASA, NOAA and the Department of Defense.

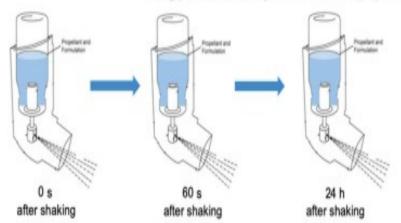

Atmos. Chem. Phys., 9, 2113–2128, 2009 www.atmos-chem-phys.net/9/2113/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.



# What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?

P. A. Newman<sup>1</sup>, L. D. Oman<sup>2</sup>, A. R. Douglass<sup>1</sup>, E. L. Fleming<sup>3</sup>, S. M. Frith<sup>3</sup>, M. M. Hurwitz<sup>4</sup>, S. R. Kawa<sup>1</sup>, C. H. Jackman<sup>1</sup>, N. A. Krotkov<sup>5</sup>, E. R. Nash<sup>3</sup>, J. E. Nielsen<sup>3</sup>, S. Pawson<sup>1</sup>, R. S. Stolarski<sup>1</sup>, and G. J. M. Velders<sup>6</sup>

# **Metered Dose Inhaler (MDI)**






## **Metered Dose Inhaler (MDI)**

#### Solution

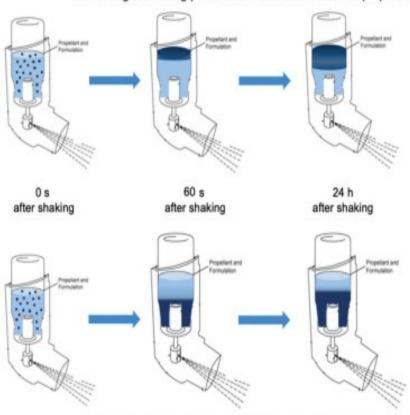
Drug particles uniformly distributed in the propellant



EXPERT OPINION ON DRUG DELIVERY https://doi.org/10.1080/17425247.2020.1767066

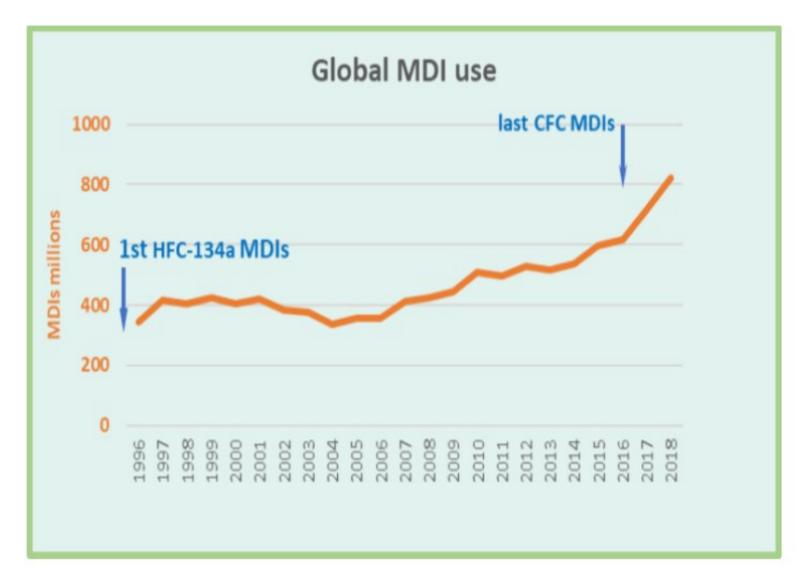


#### ORIGINAL RESEARCH


OPEN ACCESS ( Check for updates

Consequences of not-shaking and shake-fire delays on the emitted dose of some commercial solution and suspension pressurized metered dose inhalers

Veronica Chierici Oa, Luca Cavalieri<sup>b</sup>, Alessio Piraino Ob, Davide Paleari<sup>b</sup>, Eride Quarta Oc, Fabio Sonvico Oc, Andrea S Melani Od and Francesca Buttini Oc


#### Suspension

Creaming when drug particles are less dense than the propellant



Sedimentation when drug particles are denser than the propellant

### **Volume of MDIs**



<sup>\*</sup>Medical and Chemical Technical Options Committee 2018 Assessment Report

## **Contribution to Global Warming**

According to MCTOC\* 2018, based on HFC manufacturing industry estimates, approximately 800 million or more HFC MDIs (with average fill weight 13-14.5 g/MDI) are currently manufactured annually worldwide, using approximately 11,500 tonnes HFCs in 2018. HFC-134a makes up the major proportion, with HFC-227ea accounting for about 8 percent. This corresponds to direct emissions with a climate impact of approximately 18,000 ktCO2-eq.

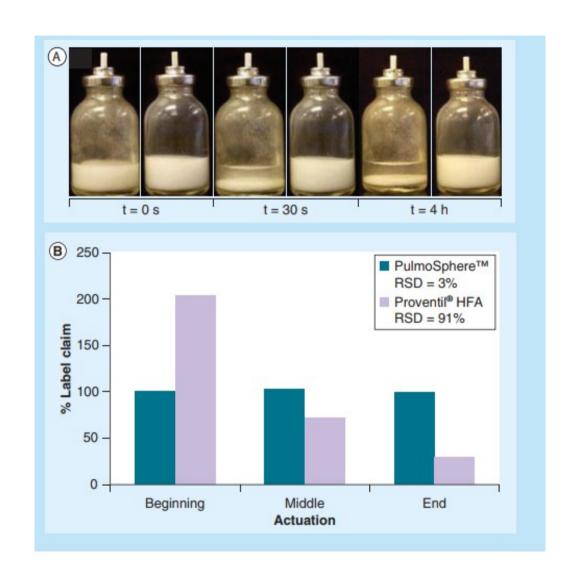
\*Medical and Chemical Technical Options Committee 2018 Assessment Report

# **MDI** propellant gases

|     | FC<br>No. | Formula                              | B.Pt<br>(°C) | S.G.<br>(g/cc,<br>20°C) | ODP* | **GWP |
|-----|-----------|--------------------------------------|--------------|-------------------------|------|-------|
| CFC | 11        | CFCI <sub>3</sub>                    | 23.7         | 1.49                    | 1    | 4660  |
| CFC | 12        | CF <sub>2</sub> CI <sub>2</sub>      | -29.8        | 1.33                    | 1    | 10800 |
| HFA | 134a      | CF <sub>3</sub> -CFH <sub>2</sub>    | -26.2        | 1.23                    | 0    | 1300  |
| HFA | 227ea     | CF <sub>3</sub> -CFH-CF <sub>3</sub> | -16.5        | 1.41                    | 0    | 3350  |
| HFA | 152a      | CF <sub>2</sub> H-CH <sub>3</sub>    | -24.7        | 0.91                    | 0    | 138   |
| HFO | 1234ez    | CHF=CHCF3                            | -19          | 1.19                    | 0    | 7     |

# **Properties of CFC/HFC Propellants**

Table VI


The Commercial Properties of Major Chlorofluorocarbons and Alternative Compounds

|               |                                      |      |      |                   |              |                       | Pr                                  | Worldwide    | tial        |                  | ist    |
|---------------|--------------------------------------|------|------|-------------------|--------------|-----------------------|-------------------------------------|--------------|-------------|------------------|--------|
|               | Boiling Point                        |      |      |                   |              |                       | Significant Commercial Applications |              |             | Price (Dec-1981) |        |
| CFC<br>Number | Formula                              | °F   | °C   | Toxicology        | Flammability | Comm. Mfg.<br>Process | Aerosol                             | Refrig./A-c. | Blowing AG. | \$/Lb.           | \$/Kg  |
| 11            | CClsF                                | 75   | 24   | Low               | None         | Excellent             | Excellent*                          | Excellent    | Excellent   | 0.64             | 1.41   |
| 12            | CCl <sub>2</sub> F <sub>2</sub>      | -22  | -30  | Low               | None         | Excellent             | Excellent*                          | Excellent    | Excellent   | 0.74             | 1.63   |
| 13            | CCIF,                                | -115 | -82  | Low               | None         | Good                  | None                                | Good         | None        | 11.00≈           | 24.30  |
| 14            | CF.                                  | -198 | -128 | Low               | None         | Fair                  | None                                | Fair         | None        | 18.62            | 41.06  |
| 21            | CHCl <sub>2</sub> F                  | 48   | 9    | Toxic             | None         | Fair                  | None                                | -            | Good        | _                | _      |
| 22            | CHCIF2                               | -41  | -40  | Poss.v.wk.mutagen | None         | Excellent             | Good                                | Excellent    | -           | 1.14             | 2.51   |
| 23            | CHF3                                 | -116 | -83  | Low               | None         | Fair                  | None                                | Fair         | -           | 13.46            | 29.68  |
| 31            | CH2CIF                               | 16   | 9    | Toxic             | Yes          | None                  | Fair                                | None         | None        |                  | _      |
| 32            | CH <sub>2</sub> F <sub>2</sub>       | -61  | -52  | Low               | Yes          | None                  | None                                | None         | None        | -                | -      |
| 113           | CCl <sub>2</sub> F.CClF <sub>2</sub> | 118  | 48   | Low               | None         | Excellent             | Good*                               | Good         | Good        | 0.79             | 1.74   |
| 114           | CCIF2-CCIF2                          | 39   | 4    | Low               | None         | Excellent             | Excellent*                          | Excellent    | Excellent   | 1.02             | 2.25   |
| 115           | CCIF2-CF3                            | -38  | -39  | Low               | None         | Good                  | Good*                               | Good         | Good        | 2.55€            | 5.62   |
| 116           | CF <sub>3</sub> -CF <sub>3</sub>     | -164 | -109 | Low               | None         | Fair                  | None                                | Fair         | None        | 4.90€            | 10.80  |
| 123           | CHCl2-CF3                            | 82   | 28   | Low               | None         | None                  | None                                | None         | Fair        | _                | _      |
| 124           | CHCIF.CF <sub>3</sub>                | 12   |      | Low               | None         | None                  | None                                | Fair         | Slight      | _                | -      |
| 125           | CHF2.CF3                             | -55  | -48  | Assumed low       | None         | None                  | None                                | Fair         | None        | _                | _      |
| 132b          | CH2Cl-CClF2                          |      | 47   | Very incomplete   | None         | None                  | None                                | None         | Poor        | -                | _      |
| 133a          | CH2Cl-CF3                            | 45   | 7    | Embryotoxic       | None         | None (USA)            | None (USA)                          | None         | Fair        | -                | _      |
| 134a          | CH <sub>2</sub> F.CF <sub>3</sub>    | -16  | -27  | Very incomplete   | None         | None                  | None                                | None         | Fair        | -                | _      |
| 141b          | CH3-CCl2F                            | 90   | 32   | Weak mutagen      | Slight       | Developmental         | None                                | None         | Good        |                  | -      |
| 142b          | CH <sub>3</sub> ·CClF <sub>2</sub>   |      | -10  | Very weak mutagen | Slight       | Good                  | Good                                | Fair         | Good        | 1.75€            | 3.86c  |
| 143a          | CH <sub>3</sub> -CHF <sub>3</sub>    | -54  | -48  | Incomplete        | Moderate     | None                  | None                                | Fair         | None        | _                | _      |
| 152a          | CH3-CHF2                             | -13  | -25  | Low               | Moderate     | Excellent             | Very Good                           | Good         | Good        | 1.55             | 3.42   |
| 3110          | C4F10                                | 28   | -2   | Low               | None         | Discontinued          | Fair                                | Good         | None        | _                | _      |
| C-318         | C <sub>4</sub> F <sub>8</sub>        | 22   | -6   | Low               | None         | Fair                  | Fair                                | -            | None        | 11.00∞           | 24.00  |
| _             | (CHF2)2O                             | 28   | -2   | Very incomplete   | None         | Discontinued          | Fair                                | _            | _           | 12.00≪           | 26.00° |
| -             | (CF <sub>3</sub> ) <sub>2</sub> O    | -67  | -55  | Very Incomplete   | None         | Discontinued          | Fair                                | _            | _           | _                | -      |
| _             | (CH <sub>3</sub> ) <sub>2</sub> O    | -13  | -25  | Low               | Yes          | Very Good             | Excellent                           | Poor         | None        | 0.57             | 1.26   |
| H-1301        | CBrF <sub>3</sub>                    | -72  | -58  | Low               | None         | Very Good             | Specialized                         | Specialized  | None        | 3.50             | 7.72   |
| H-1211        | CBrClF <sub>2</sub>                  | 28   | -2   | Low               | None         | Very Good             | Specialized                         | Specialized  | None        | 2.00             | 4.40e  |
| (LP Gases     | C <sub>3</sub> H <sub>B</sub> , etc. | _    | -    | Low               | Yes!         | Excellent             | Excellent                           | None         | None        | 0.22             | 0.48   |

<sup>\*</sup>Banned in the U.S.A. for aerosols and partly banned or reduced in other countries. CFC-11 and 12 banned in Norway and Sweden.

Prices are for bulk (f.o.b.) unless noted by "c" = small cylinders (80 pound average net) or "te" = ton cylinders. "e" represents an estimated price.

Some data may be slightly misleading due to brevity and those interested should pursue the available literature for more precise information.



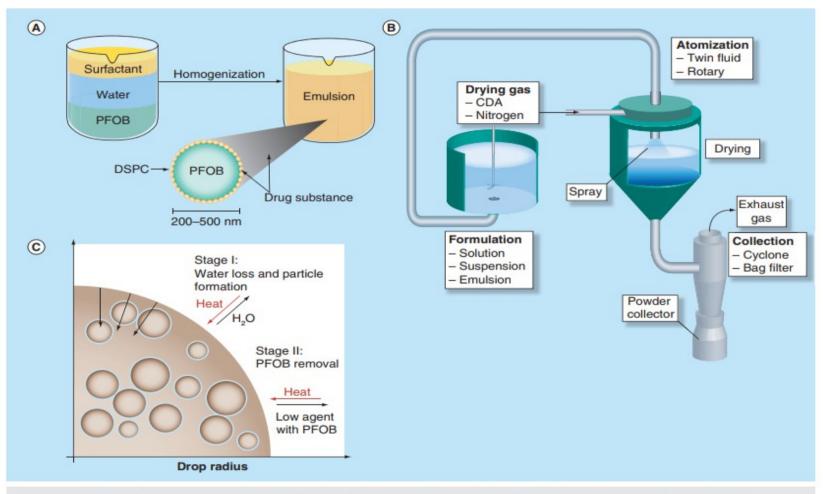



Figure 2. PulmoSphere™ particles are manufactured using an emulsion based spray-drying process. (A) Submicron

Table 2. Influence of the volume fraction of oil phase of particle properties for a 50% w/w formulation of gentamicin sulfate.

| ФРЕОВ | TEM | SEM | VMD<br>(µm) | Surface area<br>(m²/g) | ρ <sub>tapped</sub><br>(g/cm³) | Porosity<br>(%) |
|-------|-----|-----|-------------|------------------------|--------------------------------|-----------------|
| 0     | 0   |     | 3.0         | 2.0                    | 1.24                           | 1.9             |
| 0.1   | 08  |     | 3.4         | 25.7                   | 0.35                           | 72.3            |
| 0.3   | 0   |     | 5.8         | 72.4                   | 0.17                           | 86.6            |
| 0.5   | ()  |     | 7.3         | 56.9                   | 0.05                           | 96.0            |

Particle cross-sections were imaged with TEM, while particle morphologies were imaged with SEM. The VMD was obtained via laser diffraction.  $\phi_{\text{prog}}$ : Volume fraction of perfluorooctyl bromide;  $\rho_{\text{paped}}$ : Tapped density; SEM: Scanning electron microscopy; TEM: Transmission electron microscopy; VMD: Volume weight mean diameter.

Adapted with permission from [3] Virginia Commonwealth University (2000).

| API                                                      | PSph format               | <b>Delivery system</b>    | Status             | Studies                                                                                                                                                                                   | Ref.                                                              |
|----------------------------------------------------------|---------------------------|---------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Tobramycin                                               | Solution<br>PulmoSphere™  | DPI (T-326)               | Approved           | Marketed drug product for treating<br>chronic Pseudomonas aeruginosa<br>infections in CF patients. Five<br>completed clinical studies<br>encompassing more than 500 subjects              | [11,38=44]                                                        |
| Ciprofloxacin                                            | Suspension<br>PulmoSphere | DPI (T-326)               | Phase III          | Completed clinical development<br>through Phase IIb in CF and non-CF<br>bronchiectasis. Five completed studies<br>encompassing more than 400 subjects                                     | [46-50]                                                           |
| Glycopyrrolate/formoterol,<br>glycopyrrolate, formoterol | Carrier<br>PulmoSphere    | pMDI                      | Phase III          | Completed clinical development<br>through Phase IIb: ten studies<br>encompassing more than 1000 subjects<br>(COPD)                                                                        | [51,52]                                                           |
| Amphotericin B                                           | Suspension<br>PulmoSphere | DPI (T-326)               | End of<br>Phase II | Completed three Phase I studies in 57 healthy volunteers. Completed end of Phase II meetings with Health Authorities for prophylaxis against invasive pulmonary aspergillosis indication. | [Nektar<br>Therapeutics,<br>Unpublished Data]                     |
| Glycopyrrolate/ Formoterol/<br>Budesonide                | Carrier<br>PulmoSphere    | pMDI                      | Phase I            | A Phase I study was initiated with the<br>triple combination for COPD                                                                                                                     | [76]                                                              |
| Indacaterol                                              | Suspension<br>PulmoSphere | DPI (Concept1,<br>Simoon) | Proof of concept   | Completed three studies with more than 100 subjects                                                                                                                                       | [Novartis<br>Pharmaceuticals<br>Corporation,<br>Unpublished Data] |
| Budesonide                                               | Suspension<br>PulmoSphere | DPI (Eclipse®)            | Proof of concept   | Pharmacoscintigraphy study exploring<br>flow rate dependence of budesonide<br>PulmoSphere relative to Pulmicort®<br>Turbuhaler® in ten healthy volunteers                                 | [10]                                                              |
| Leuprolide                                               | Solution<br>PulmoSphere   | DPI (Turbospin®)          | Proof of concept   | Pharmacokinetics study in 12 healthy volunteers                                                                                                                                           | [Inhale<br>Therapeutic<br>Systems,<br>Unpublished Data]           |
| Albuterol                                                | Solution<br>PulmoSphere   | pMDI                      | Proof of concept   | γ scintigraphy study comparing<br>albuterol PulmoSphere formulation to<br>Ventolin® Evohaler® in nine healthy<br>volunteers                                                               | [22]                                                              |

"Large doses of PFOB (up to 30 ml/kg body weight) have been instilled into the lungs in support of partial liquid ventilation. Based on pulmonary safety studies in non-human primates, the calculated permitted daily exposure according to residual solvent guidelines set by the International Conference on Harmonization of Technical Requirements of Pharmaceuticals for Human Use (ICH Q3C) is about 1 g/day [Alliance Pharmaceutical Corporation, Unpublished Data].

This is orders of magnitude in excess of the anticipated PFOB levels delivered in PulmoSphere powders, where residual concentrations of less than 0.5% w/w are typically measured in spray-dried powders."

#### Effects of perfluorocarbon emulsions on human fibroblasts and effects of emulsion storage temperature on particle size distribution

Valérie Centis, Charles J. Doillon, Patrick Vermette

#### 3.2 Abstract

The purpose of this study was to characterize emulsion preparations made of perfluorooctyl bromide (PFOB) and egg yolk phospholipid (EYP) and their cytotoxicity. Dynamic light scattering and transmission electron microscopy revealed that freshly prepared emulsions stored at different temperatures for a 24-hour period have a unimodal particle size distribution with an average particle size of ca. 200 nm. The emulsion displayed a broader particle size distribution following 14-day storage. Primary human fibroblasts exposure to PFOB/EYP emulsions permanently inhibited cell proliferation and decreased mitochondrial activity. Scanning electron microscopy pictures reveal the presence of spherical particles on the fibroblasts following exposure to the emulsions after thorough rinsing with culture media.

**Keywords:** Perfluorocarbon emulsions, PFOB, oxygen carriers, cytotoxicity, fibroblasts, cell morphology, cytocompatibility.

#### Valerie Centis Thesis 2009

# **Alternative Technologies**

Co-solvent systems

Alternative propellant

Softmist spray